Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Polymers (Basel) ; 16(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38543353

ABSTRACT

Calcium-containing organic-inorganic nanocomposites play an essential role in developing bioactive bone biomaterials. Ideally, bone substitute materials should mimic the organic-inorganic composition of bone. In this study, the roles of calcium chloride (CaCl2) and calcium ethoxide (Ca(OEt)2) were evaluated for the development of sol-gel-derived organic-inorganic biomaterials composed of gelatin, bioactive glass (BG) and multiwall carbon nanotubes (MWCNTs) to create nanocomposites that mimic the elemental composition of bone. Nanocomposites composed of either CaCl2 or Ca(OEt)2 were chemically different but presented uniform elemental distribution. The role of calcium sources in the matrix of the nanocomposites played a major role in the swelling and degradation properties of biomaterials as a function of time, as well as the resulting porous properties of the nanocomposites. Regardless of the calcium source type, biomineralization in simulated body fluid and favorable cell attachment were promoted on the nanocomposites. 10T1/2 cell viability studies using standard media (DMEM with 5% FBS) and conditioned media showed that Ca(OEt)2-based nanocomposites seemed more favorable biomaterials. Collectively, our study demonstrated that CaCl2 and Ca(OEt)2 could be used to prepare sol-gel-derived gelatin-BG-MWCNT nanocomposites, which have the potential to function as bone biomaterials.

2.
Biomater Adv ; 154: 213616, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708668

ABSTRACT

Natural bone is a complex organic-inorganic composite tissue that possesses endogenous electrically conductive properties in response to mechanical forces. Mimicking these unique properties collectively in a single synthetic biomaterial has so far remained a formidable task. In this study, we report a synthesis strategy that comprised gelatin methacryloyl (GelMA), sol-gel derived tertiary bioactive glass (BG), and uniformly dispersed multiwall carbon nanotubes (MWCNTs) to create nanocomposite hydrogels that mimic the organic-inorganic composition of bone. Using this strategy, biomaterials that are electrically conductive and possess electro-mechanical properties similar to endogenous bone were prepared without affecting their biocompatibility. Nanocomposite hydrogel biomaterials were biodegradable and promoted biomineralization, and supported multipotent mesenchymal progenitor cell (10T1/2) cell interactions and differentiation into an osteogenic lineage. To the best of our knowledge, this work presents the first study to functionally characterize suitable electro-mechanical responses in nanocomposite hydrogels, a key process that occurs in the natural bone to drive its repair and regeneration. Overall, the results demonstrated GelMA-BG-MWCNT nanocomposite hydrogels have the potential to become promising bioactive biomaterials for use in bone repair and regeneration.


Subject(s)
Biocompatible Materials , Nanotubes, Carbon , Biocompatible Materials/pharmacology , Nanogels , Hydrogels/pharmacology
3.
Biomedicines ; 12(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38255173

ABSTRACT

Single-cell DNA sequencing can address the sequence of somatic genetic events during myeloid transformation in relapsed acute myeloid leukemia (AML). We present an NPM1-mutated AML patient with an initial low ratio of FLT3-ITD (low-risk ELN-2017), treated with midostaurin combined with standard chemotherapy as front-line treatment, and with salvage therapy plus gilteritinib following allogenic stem cell transplantation after relapse. Simultaneous single-cell DNA sequencing and cell-surface immunophenotyping was used in diagnostic and relapse samples to understand the clinical scenario of this patient and to reconstruct the clonal composition of both tumors. Four independent clones were present before treatment: DNMT3A/DNMT3A/NPM1 (63.9%), DNMT3A/DNMT3A (13.9%), DNMT3A/DNMT3A/NPM1/FLT3 (13.8%), as well as a wild-type clone (8.3%), but only the minor clone with FLT3-ITD survived and expanded after therapy, being the most represented one (58.6%) at relapse. FLT3-ITD was subclonal and was found only in the myeloid blast population (CD38/CD117/CD123). Our study shows the usefulness of this approach to reveal the clonal architecture of the leukemia and the identification of small subclones at diagnosis and relapse that may explain how the neoplastic cells can escape from the activity of different treatments in a stepwise process that impedes the disease cure despite different stages of complete remission.

4.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628381

ABSTRACT

The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.


Subject(s)
Mutation , Myeloid Differentiation Factor 88 , Waldenstrom Macroglobulinemia , Aged , Humans , Immunoglobulin M/genetics , Immunoglobulin M/metabolism , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/genetics , Waldenstrom Macroglobulinemia/metabolism
6.
J Mol Diagn ; 22(1): 60-71, 2020 01.
Article in English | MEDLINE | ID: mdl-31605801

ABSTRACT

Acute myeloid leukemias (AMLs) are currently genomically characterized by karyotype, fluorescence in situ hybridization (FISH), real-time quantitative PCR, and DNA sequencing. Next-generation sequencing offers the promise of detecting all genomic lesions in a single run. However, technical limitations have hampered the detection of chromosomal rearrangements, so most studies are limited to somatic mutation assessment or require the use of RNA-based strategies. To overcome these limitations, we designed a targeted-DNA capture next-generation sequencing approach associated with easy-to-perform public bioinformatic tools for one-step identification of translocations, inversions, and somatic mutations in AML. Thirty well-characterized newly diagnosed myeloid leukemia patients (27 AML and 3 chronic myeloid leukemia) were tested with the panel. Twenty-three of 24 known rearrangements, as well as one novel fusion gene that could not be detected by karyotype/fluorescence in situ hybridization/real-time quantitative PCR, were detected. This strategy also identified all chromosomal breakpoints as potential targets for future high-sensitive minimal residual disease studies. In addition, mutation analysis revealed the presence of missense protein-coding alterations in at least 1 of the 32 genes evaluated in 21 of 30 patients (70%). This strategy may represent a time- and cost-effective diagnostic method for molecular characterization in AML.


Subject(s)
Chromosome Aberrations , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Acute/genetics , Mutation, Missense , Base Sequence , Bone Marrow , Chromosome Breakpoints , DNA Mutational Analysis/methods , Data Accuracy , Humans , In Situ Hybridization, Fluorescence/methods , Karyotyping/methods , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Sequence Analysis, DNA/methods
7.
Blood Cancer J ; 9(7): 52, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31209206

ABSTRACT

Follicular lymphoma (FL) is a heterogeneous disease whose pathogenesis remains partially unknown. Around 20% of FL patients experience early progression or treatment-refractory disease and 2-3% of patients per year experience histological transformation (HT) into a more aggressive lymphoma (tFL). Here, we evaluate the immunoglobulin heavy chain variable (IGHV) gene usage and mutational status in 187 FL cases to assess its impact on clinical outcome and histological transformation. The IGHV gene repertoire was remarkably biased in FL. The IGHV4-34 (14%), IGHV3-23 (14%), IGHV3-48 (10%), IGHV3-30 (9%) and IGHV3-21 (7%) genes accounted for more than half of the whole cohort. IGHV3-48 was overrepresented in cases of tFL (19%) compared with non-transformed FL at 5 years (5%, P = 0.05). Patients with the IGHV3-48 gene were significantly more likely to have had HT after 10 years than those who used other genes (71% vs. 25%, P < 0.05), irrespective of the therapy they received. Moreover, IGHV3-30 was also overrepresented in cases of FL (9%) and tFL (13%) compared with diffuse large B-cell lymphoma in which it was nearly absent. In conclusion, our results indicate a role for antigen selection in the development of FL, while the use of IGHV3-48 could help predict histological transformation.


Subject(s)
Gene Rearrangement, B-Lymphocyte, Heavy Chain , Genes, Immunoglobulin Heavy Chain , Immunoglobulin Variable Region , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Female , Humans , Lymphoma, Follicular/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Male , Middle Aged , Prognosis , Young Adult
8.
Appl Immunohistochem Mol Morphol ; 22(10): 768-73, 2014.
Article in English | MEDLINE | ID: mdl-24992174

ABSTRACT

MYD88 L265P mutation has been reported in ∼90% of Waldenström's Macroglobulinemia (WM) patients and immunoglobulin M (IgM) monoclonal gammopathies of uncertain significance (MGUS), as well as in some cases of lymphoma and chronic lymphocytic leukemia. The present study aimed to develop a real-time allele-specific oligonucleotide PCR (ASO-RQ-PCR) to detect the MYD88 L265P mutation. We first evaluated the reproducibility and sensitivity of the technique with a diluting experiment of a previously known positive sample. Then, we evaluated the applicability of the methodology by analyzing 30 selected patients (10 asymptomatic WM, 10 symptomatic WM, and 10 IgM MGUS) as well as 10 healthy donors. The quantitative ASO-PCR assay could detect the MYD88 L265P mutation at a dilution of 0.25%, showing an inverse correlation between the tumor cell percentage and the cycle threshold (CT) value, thus allowing for tumor burden quantitation. In addition, mutated cases were distinguished from the unmutated by >10 cycles of difference between CTs. To sum up, ASO-RQ-PCR is an inexpensive, robust, and optimized method for the detection of MYD88 L265P mutation, which could be considered as a useful molecular tool during the diagnostic work-up of B-cell lymphoproliferative disorders.


Subject(s)
DNA Mutational Analysis/methods , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Mutation/genetics , Myeloid Differentiation Factor 88/genetics , Real-Time Polymerase Chain Reaction/methods , Waldenstrom Macroglobulinemia/diagnosis , Alleles , Diagnosis, Differential , Humans , Immunoglobulin M/metabolism , Monoclonal Gammopathy of Undetermined Significance/genetics , Reproducibility of Results , Sensitivity and Specificity , Tumor Burden , Waldenstrom Macroglobulinemia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...