Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 10663, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739190

ABSTRACT

Soybean is one of the most important crops worldwide. Brazil and the United States (US) are the world's two biggest producers of this legume. The increase of publicly available DNA sequencing data as well as high-density genotyping data of multiple soybean germplasms has made it possible to understand the genetic relationships and identify genomics regions that underwent selection pressure during soy domestication and breeding. In this study, we analyzed the genetic relationships between Brazilian (N = 235) and US soybean cultivars (N = 675) released in different decades and screened for genomic signatures between Brazilian and US cultivars. The population structure analysis demonstrated that the Brazilian germplasm has a narrower genetic base than the US germplasm. The US cultivars were grouped according to maturity groups, while Brazilian cultivars were separated according to decade of release. We found 73 SNPs that differentiate Brazilian and US soybean germplasm. Maturity-associated SNPs showed high allelic frequency differences between Brazilian and US accessions. Other important loci were identified separating cultivars released before and after 1996 in Brazil. Our data showed important genomic regions under selection during decades of soybean breeding in Brazil and the US that should be targeted to adapt lines from different origins in these countries.


Subject(s)
Glycine max , Plant Breeding , Brazil , Genome, Plant , Genomics , Polymorphism, Single Nucleotide , Glycine max/genetics , United States
2.
Front Plant Sci ; 13: 842571, 2022.
Article in English | MEDLINE | ID: mdl-35432410

ABSTRACT

Although Brazil is currently the largest soybean producer in the world, only a small number of studies have analyzed the genetic diversity of Brazilian soybean. These studies have shown the existence of a narrow genetic base. The objectives of this work were to analyze the population structure and genetic diversity, and to identify selection signatures in the genome of soybean germplasms from different companies in Brazil. A panel consisting of 343 soybean lines from Brazil, North America, and Asia was genotyped using genotyping by sequencing (GBS). Population structure was assessed by Bayesian and multivariate approaches. Genetic diversity was analyzed using metrics such as the fixation index, nucleotide diversity, genetic dissimilarity, and linkage disequilibrium. The software BayeScan was used to detect selection signatures between Brazilian and Asian accessions as well as among Brazilian germplasms. Region of origin, company of origin, and relative maturity group (RMG) all had a significant influence on population structure. Varieties belonging to the same company and especially to the same RMG exhibited a high level of genetic similarity. This result was exacerbated among early maturing accessions. Brazilian soybean showed significantly lower genetic diversity when compared to Asian accessions. This was expected, because the crop's region of origin is its main genetic diversity reserve. We identified 7 genomic regions under selection between the Brazilian and Asian accessions, and 27 among Brazilian varieties developed by different companies. Associated with these genomic regions, we found 96 quantitative trait loci (QTLs) for important soybean breeding traits such as flowering, maturity, plant architecture, productivity components, pathogen resistance, and seed composition. Some of the QTLs associated with the markers under selection have genes of great importance to soybean's regional adaptation. The results reported herein allowed to expand the knowledge about the organization of the genetic variability of the Brazilian soybean germplasm. Furthermore, it was possible to identify genomic regions under selection possibly associated with the adaptation of soybean to Brazilian environments.

3.
BMC Genomics ; 20(1): 798, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31672122

ABSTRACT

BACKGROUND: Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers that will be useful in breeding programs. RESULTS: We characterized the response to SSC infection in a panel of 295 accessions from different regions of the world, including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped, and we identified marker loci associated with Diaporthe aspalathi resistance through GWAS. We identified 19 SNPs associated with southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association (p-value = 6.35E-27) and explained a large amount of the observed phenotypic variance (R2 = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi in most of the lines constituting this panel. In resequenced soybean materials, we identified other SNPs in the region identified through GWAS in the same LD block that clearly differentiate resistant and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% selection efficiency. CONCLUSIONS: Our results suggest relevance of this locus to SSC resistance in soybean cultivars and accessions from different countries, and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select materials that are resistant against this pathogen and support its introgression.


Subject(s)
Ascomycota/physiology , Chromosome Mapping , Disease Resistance/genetics , Genetic Loci/genetics , Glycine max/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Alleles , Genetic Markers/genetics , Phenotype , Plant Diseases/immunology , Glycine max/immunology , Glycine max/microbiology
4.
BMC Genomics ; 17: 110, 2016 Feb 13.
Article in English | MEDLINE | ID: mdl-26872939

ABSTRACT

BACKGROUND: Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germplasm, we selected soybean cultivars based on the year of commercialization, geographical region and maturity group and resequenced their genomes. RESULTS: We resequenced the genomes of 28 Brazilian soybean cultivars with an average genome coverage of 14.8X. A total of 5,835,185 single nucleotide polymorphisms (SNPs) and 1,329,844 InDels were identified across the 20 soybean chromosomes, with 541,762 SNPs, 98,922 InDels and 1,093 CNVs that were exclusive to the 28 Brazilian cultivars. In addition, 668 allelic variations of 327 genes were shared among all of the Brazilian cultivars, including genes related to DNA-dependent transcription-elongation, photosynthesis, ATP synthesis-coupled electron transport, cellular respiration, and precursors of metabolite generation and energy. A very homogeneous structure was also observed for the Brazilian soybean germplasm, and we observed 41 regions putatively influenced by positive selection. Finally, we detected 3,880 regions with copy-number variations (CNVs) that could help to explain the divergence among the accessions evaluated. CONCLUSIONS: The large number of allelic and structural variations identified in this study can be used in marker-assisted selection programs to detect unique SNPs for cultivar fingerprinting. The results presented here suggest that despite the diversification of modern Brazilian cultivars, the soybean germplasm remains very narrow because of the large number of genome regions that exhibit low diversity. These results emphasize the need to introduce new alleles to increase the genetic diversity of the Brazilian germplasm.


Subject(s)
Genetic Variation , Genome, Plant , Genomics , Glycine max/genetics , High-Throughput Nucleotide Sequencing , Alleles , Brazil , Cluster Analysis , DNA Copy Number Variations , Genomics/methods , INDEL Mutation , Phylogeny , Polymorphism, Single Nucleotide , Selection, Genetic , Glycine max/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...