Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000808

ABSTRACT

This work proposes for the first time protecting-reflecting on both sides of plated mirrors and a solution to polycarbonate surface vulnerability to weathering and scratching using tungsten disulfide (WS2) by mechanical polishing. The ability of the dynamic chemical plating (DCP) technique to deposit Ag films at the nanometer scale on a polycarbonate (PC) substrate and its characteristics to be metallized is also shown. These deposits hold significant promise for concentrated solar power (CSP) applications. Complementarily, the application of WS2 as a reflective film for CSP by mechanical polishing on smooth polycarbonate surfaces is both novel and practical. This technique is innovative and scalable without needing reactants or electrical potential, making it highly applicable in real-world scenarios, including, potentially, on-site maintenance. The effects of surface morphology and adhesion, and the reflectivity parameters of the silver metallic surfaces were investigated. Wettability was investigated because it is important for polymeric surfaces in the activation and metal deposition immediately after redox reactions. The flame technique improved wettability by modifying the surface with carbonyl and carboxyl functional groups, with PC among the few industrial polymers that resisted such a part of the process. The change in the chemical composition, roughness, and wettability of the surfaces effectively improved the adhesion between the Ag film and the PC substrate. However, it did not significantly affect the adhesion between PC and WS2 and showed its possible implementation as a first surface mirror. Overall, this work provides a scalable, innovative method for improving the durability and reflectivity of polycarbonate-based mirrors, with significant implications for CSP applications.

2.
Polymers (Basel) ; 16(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611270

ABSTRACT

A plastic injection waste known as "purge" cannot be reintegrated into the recycling chain due to its shape, size, and composition. Grinding these cannot be carried out with traditional mills due to significant variations in size and shape. This work proposes a process and the design of a device that operates with solar energy to cut the purges without exceeding the degradation temperature. The size reduction allows reprocessing, revalorization, and handling. The purges are mixtures of processed polymers, so their characterization information is unavailable. Some characterizations were conducted before the design of the process and after the cut of the purges. Some of the most representative purges in a recycling company were evaluated. The flame test determines that all material mixtures retain thermoplasticity. The hardness (Shore D) presented changes in four of the purges being assessed, with results in a range of 59-71 before softening and 60-68 after softening. Young's modulus was analyzed by the impulse excitation technique (IET), which was 2.38-3.95 GPa before softening and 1.7-4.28 after softening. The feasibility of cutting purges at their softening temperature was evaluated. This was achieved in all the purges evaluated at 250-280 °C. FTIR allowed for corroboration of no significant change in the purges after softening. The five types of purges evaluated were polypropylene-ABS, polycarbonate-ABS-polypropylene, yellow nylon 66, acetal, and black nylon 66 with fillers, and all were easily cut at their softening temperature, allowing their manipulation in subsequent process steps.

SELECTION OF CITATIONS
SEARCH DETAIL