Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 124(19): 3973-3983, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32309944

ABSTRACT

From electrochemical potentiodynamic and potentiostatic techniques, the electrodeposition mechanism and kinetics of palladium nanoparticles (PdNPs) onto a glassy carbon electrode (GCE), from Pd(II) ions dissolved in the choline chloride-urea deep eutectic solvent (reline) at 343 K, are reported for the first time. From the analysis of the potentiostatic current density transients, using the model developed by Palomar-Pardavé et al. [ Electrochim. Acta, 2005, 50, 4736-4745], it shows that the PdNPs electrodeposition occurs by multiple 3D nucleation and diffusion controlled-growth with the simultaneous reduction of residual water on the PdNPs growing surfaces. This model renders not just the quantification of the palladium nucleation kinetics parameters, but it effectively allows deconvolving the individual contributions to the total current and, thus, from the integration of the j-t plots of these contributions. It was demonstrated that the charge amount of each process depends on the deposition time and applied overpotential. From SEM images, it was possible to verify that the palladium deposits were constituted by PdNPs and from XPS measurements that these PdNPs were formed by a metallic palladium (core) and Pd(OH)2 (shell).

SELECTION OF CITATIONS
SEARCH DETAIL
...