Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Photochem Photobiol Sci ; 20(12): 1635-1644, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34802142

ABSTRACT

Visible light (λ > 420 nm) selective photooxidation of phenylmethanol and 4-pyridinylmethanol in CH3CN to the corresponding aldehydes on N-TiO2 is compared with homemade undoped TiO2 (U-TiO2) and commercial undoped anatase specimens (such as PC105, PC500). Significant differences observed between N-TiO2 and undoped TiO2 are neither directly related to the surface area nor to the adsorbed amount of alcohol in the dark by surface area unit. FTIR and EPR spectroscopies are used to study the surface of TiO2 samples and to deeply understand the phenomena intervening in the visible-light photocatalytic activation of the doped vs the undoped oxides. In particular, it is shown that on N-TiO2 (and also on undoped PC105) strong Lewis acid sites (LAS) exist. The favorable role of LAS on the photocatalytic activity is illustrated by the higher photooxidation of 4-pyridinylmethanol vs phenylmethanol over N-TiO2 and PC105 in contrast to the other undoped samples, whose visible light sensitivity originates from a charge transfer between the alcohol and the solid. EPR spectra of N-TiO2 point out the presence of paramagnetic centers related to nitrogen that disappear when the photocatalyst is irradiated with visible light in the presence of alcohol, which starts its oxidative process. On the basis of presented results, we propose that doping with N introduces new intraband gap states that not only contribute to LAS and adsorption of alcohol but also are directly involved in the photochemical process occurring under visible light irradiation.

2.
Chemistry ; 20(25): 7759-65, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24829086

ABSTRACT

We address the role of the energetics of photogenerated electrons in the reduction of 4-nitrobenzaldehyde on TiO2. This model molecule bears two functional groups featuring different reducibilities. Electrochemistry shows that reduction to 4-aminobenzyl alcohol occurs in entirely distinct potential ranges. Partial reduction of the -NO2 group, affording 4-aminobenzaldehyde, takes place through surface states at potentials positive of the flatband potential (E(fb)). Dark currents caused by reduction of the aldehyde group are observed only at potentials more negative than E(fb), and the process requires an electron accumulation regime. Photocatalysis with TiO2 suspensions agrees with the electrochemical data. In particular, reduction of the nitro group is a relatively fast process (k=0.059 s(-1)), whereas that of the aldehyde group is slower (k=0.001 s(-1)) and requires electron photoaccumulation. Control of the photogenerated charge is a prospective means for achieving chemoselective reductions.

3.
Top Curr Chem ; 303: 185-216, 2011.
Article in English | MEDLINE | ID: mdl-21516389

ABSTRACT

Photocatalysis is particularly relevant in order to realize chemical transformations of interest in synthesis and, at the same time, to move towards a "sustainable chemistry" with a minimal environmental impact. Heterogeneous systems with well-defined textural characteristics represent a suitable means to tailor the selectivity of photocatalytic processes. Here, we summarize and classify the significant features of photocatalysts consisting of photoactive metal oxides dispersed on high-surface-area solid supports, or constrained inside their porous network. These systems are based on the use of titanium dioxide, highly dispersed oxides of titanium, chromium, vanadium, and polyoxotungstates. They share similar primary photoprocesses: light absorption induces a charge separation process with formation of positive holes able to oxidize organic substrates. A great number of the papers discussed here concern oxidation reactions carried out in the presence of O2 for inducing partial oxidation of alcohols and monooxygenation of hydrocarbons. We also devote some attention to photocatalysis in the absence of O2. In these conditions, the photogenerated charge separation offers the possibility to induce the formation of C-C and C-N bonds. We emphasize that the optimal tailoring of photoactive materials for synthetic purposes can be achieved by combining recent advances in the preparation of nanostructured materials with mechanistic knowledge derived from surface science and molecular level investigations.


Subject(s)
Chromium Compounds/chemistry , Titanium/chemistry , Catalysis , Oxidation-Reduction , Tungsten Compounds/chemistry , Vanadium Compounds/chemistry
4.
Dalton Trans ; 39(33): 7826-33, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20657929

ABSTRACT

Two heterogeneous photocatalysts have been prepared by entrapment of [nBu(4)N](4)W(10)O(32) in a silica matrix, through a sol-gel procedure: SiO(2)/W30% and SiO(2)/W10% with 30% and 10% of decatungstate, respectively. They are characterized by the presence of micropores of about 7 A and 15 A and mesopores of about 25 A. Due to different preparation procedures, SiO(2)/W10% presents a more remarkable porous network than SiO(2)/W30%. The morphological features of SiO(2)/W30% and SiO(2)/W10% differ from those of their parent material SiO(2)/W0%, indicating that incorporation of the decatungstate induces a significant modification of the porous texture of the siliceous material. These photocatalysts demonstrate good stability in the oxygen-assisted photooxidation of 1-pentanol and 3-pentanol, which have been chosen as models of primary and secondary aliphatic alcohols. In particular, photoexcitation (lambda > 290 nm, 25 degrees C, 760 torr of O(2)) leads to conversion of these two substrates to pentanal or 3-pentanone, with a mass balance of about 90%. There is a strong effect of the solid support on the reactivity of the two alcoholic substrates. In particular, oxidation of 1-pentanol with SiO(2)/W10% is about four times faster than with [nBu(4)N](4)W(10)O(32) in homogeneous solution. Preferential adsorption phenomena, due to the hydrophilic character of silica explain the photocatalytic properties of the two heterogeneous systems, because adsorption favours the contact between the photoexcited decatungstate and the primary OH group of 1-pentanol. Moreover, some kind of shape selectivity, due to the microporous structure of the investigated materials, likely contributes to control the conversion yields.

5.
Chemistry ; 15(32): 7949-7957, 2009 Aug 10.
Article in English | MEDLINE | ID: mdl-19609992

ABSTRACT

Tetrabutylammonium decatungstate (WO) photocatalyzes radical alkylation reactions starting directly from alkanes. When using tert-butylcyclohexane and methylcyclohexane as the radical precursors, the addition to electrophilic alkenes (beta,beta-dialkylmethylenemalononitriles, acrylonitrile, methyl acrylate, methyl vinyl ketone) is regioselective and exclusively gives 3- and 4-substituted cyclohexyl adducts, with no significant functionalization of the other positions. Furthermore, when a beta,beta-disubstituted alkene is used, the reaction is stereoselective (cis stereochemistry for the 1,3-cyclohexane derivatives and trans for the 1,4 isomers). Some of the reactions have also been carried out by using benzophenone as the photocatalyst, giving the same product distribution. However, the decatungstate anion is a superior catalyst from a preparative point of view, because it is efficient at low concentrations (0.002 m, 2 mol %) and allows for a simple work up. From a mechanistic point of view, the role of both the alkyl radicals and the radical adducts has been assessed by trapping experiments in the presence of suitable additives (alpha-phenyl-N-tert-butylnitrone, PBN, and 2-methyl-2-nitrosopropane, MNP) and by EPR spectroscopic detection of the resulting nitroxides in solution. Furthermore, trapping by the nitroxide TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidine N-oxide) gives O-(tert-butylcyclohexyl)hydroxylamines, again as only the 3- and the 4-substituted isomers. We conclude that the observed regioselective activation originates from the initial hydrogen abstraction step (the statistically corrected ratio for positions 3 and 4 ranges from 1.1 to 1.35 for all of the trapping products). The selectivity is mainly due to steric hinderence.

6.
Photochem Photobiol Sci ; 8(5): 613-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19424533

ABSTRACT

Proper reaction conditions have been found for the conversion of geraniol, citronellol, trans-2-penten-1-ol and 1-pentanol to the corresponding aldehydes with good chemo-selectivity (>70%) by photochemical excitation of suspensions of P25-TiO(2). It is demonstrated that adsorption of the alcohol on the surface as an alcoholate is necessary for its oxidation. ESR-spin trapping experiments point out that oxidation of alcohols starts with the formation of alkoxide radicals. Water content in the dispersing medium strongly inhibits alcohol adsorption and subsequent oxidation. In fact, water increases the polarity of the dispersing medium favouring the affinity between the polar alcohol and the CH(3)CN-H(2)O mixture itself; moreover, water competitive adsorption with the alcohol causes the removal of the latter from the photocatalytic surface with consequent difficult oxidation, as evidenced by ESR-spin trapping investigation. The reactivity of the alcohol on the surface of photoexcited P25-TiO(2) is also affected by the nature of its hydrophobic aliphatic chain: geraniol and citronellol are more susceptible to the water content than their short analogues trans-2-penten-1-ol and 1-pentanol. Moreover, in anhydrous CH(3)CN, specific interaction between the surface and the OH group enhances the reactivity of the primary aliphatic alcohols towards their partial oxidation to aldehyde, which can be accumulated in the reaction environment.

7.
Photochem Photobiol Sci ; 7(7): 819-25, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18597030

ABSTRACT

The photooxygenation of cyclohexane by molecular oxygen has been investigated on two mesoporous TiO(2) materials, which have been prepared using colloidal nanoparticles as building blocks. One of the structured systems (mpTiO(2)-50) is a mixture of 50% TiO(2) and 50% SiO(2); the second one (mpTiO(2)-100) is constituted by 100% of TiO(2). Both mpTiO(2)-100 and mpTiO(2)-50 can induce cyclohexane photooxidation in repeated cycles, but with the former the yield in cyclohexanone is higher and only traces of cyclohexanol are observed. The results of experiments with different incident light intensities are reported: contrary to mpTiO(2)-50, the selectivity of mpTiO(2)-100 towards cyclohexanone is not significantly affected by the photonic flux. Based on the substrate conversion rates, incident photonic flux effects, photoluminescence and EPR spectra of the mesoporous materials, we infer that the photoreactivity of mpTiO(2)-100 and mpTiO(2)-50 is mainly controlled by textural effects. In particular, we propose that the inter-particle electron mobility that characterizes the mpTiO(2)-100 material, which is constituted exclusively of TiO(2) nanoparticles, entails a better utilization of electron traps for converting the photogenerated cyclohexyl-peroxide radicals to cyclohexanone.

8.
Photochem Photobiol Sci ; 5(11): 993-5, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17077893

ABSTRACT

Photoexcitation under mild temperature and pressure conditions of FeCl4- heterogenized with Amberlite causes the conversion of several cycloalkanes to the corresponding monochlorinated products with selectivity higher than 95%.

9.
Chem Commun (Camb) ; (13): 1749-51, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-15791320

ABSTRACT

The nitroarene p-nitrotoluene is converted with a selectivity higher than 85% to the corresponding carbamate at room temperature and atmospheric pressure, using photoexcited particles of TiO2 as catalyst and EtOH as carbonylating species.

10.
Eur J Pharm Sci ; 22(4): 241-9, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15196580

ABSTRACT

The interaction between the sunscreen agent, phenylbenzimidazole sulphonic acid (PBSA) and hydrophilic alpha-, beta-, and gamma-cyclodextrin derivatives was investigated under acidic conditions (pH 4.0) by phase-solubility analysis. Among the available cyclodextrins, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and random methyl-beta-cyclodextrin (RM-beta-CD) had the greatest solubilizing activity. The complexation of the sunscreen agent with HP-beta-CD and RM-beta-CD was confirmed by nuclear magnetic resonance spectroscopy. Solid-phase characterization of the PBSA/cyclodextrin systems by X-ray diffractometry defined the most appropriate method (co-evaporation) and cyclodextrin concentration (10-fold molar excess) for the preparation of a stable complexed form of PBSA. Long-term stability studies demonstrated that the decrease of the sunscreen level in emulsion preparations (pH 4.0) was almost completely suppressed by HP-beta-CD, RM-beta-CD being less effective. Moreover, the irradiation-induced decomposition of PBSA in the emulsion vehicle was markedly reduced by complexation with HP-beta-CD (the extent of degradation was 3.9% for the complex compared to 9.1% for uncomplexed PBSA), whereas RM-beta-CD had no significant influence. In addition, electron paramagnetic resonance (EPR) spin-trapping studies showed that the inclusion of the sunscreen agent into the HP-beta-CD cavity completely inhibited the formation of free-radicals generated by PBSA on exposure to simulated sunlight, thereby suppressing its photosensitising potential.


Subject(s)
Benzimidazoles/chemistry , Cyclodextrins/chemistry , Sulfonic Acids/chemistry , Sunscreening Agents/chemistry , Benzimidazoles/radiation effects , Drug Stability , Free Radicals , Kinetics , Light , Sulfonic Acids/radiation effects , Sunscreening Agents/radiation effects , Ultraviolet Rays
11.
Chemistry ; 10(1): 142-8, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14695559

ABSTRACT

Alkyl radical obtained by irradiation of tetrabutylammonium decatungstate in acetonitrile in the presence of cycloalkanes (C5H10, C6H12, C7H14) are efficiently trapped by electrophilic alkenes (acrylonitrile, isopropylydenmalonitrile, isopropylydencyanoacetate) to give the corresponding alkylated aliphatic nitriles. The reaction can be carried out up to complete conversion of the alkene with reasonable (in most cases 60-65 %) yields. Addition of the radicals to the alkene is followed by electron transfer from reduced decatungstate regenerating the sensitizer (turn over number up to 60). Steady-state measurements, EPR evidence, deuteration experiments and attempted intramolecular trapping of the adduct radical support the mechanistic proposal.

13.
Photochem Photobiol Sci ; 1(12): 951-4, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12661591

ABSTRACT

Catalytic amounts of glucose oxidase from Aspergillus niger (GO) are active in the reduction of O2 to H2O2 in the presence of irradiated suspensions of TiO2 and isopropyl alcohol as electron donor. An explanation of this behaviour is given on the basis of the ability of the enzyme to capture electrons from the photoexcited TiO2 instead of its natural substrate, glucose. This process has a marked positive effect on both the oxidation of isopropyl alcohol to acetone and the formation of radical intermediates, which have been detected, for the first time, by EPR-spin trapping investigation.


Subject(s)
2-Propanol/chemistry , Glucose Oxidase/chemistry , Hydrogen Peroxide/chemical synthesis , Oxygen/chemistry , Photochemistry/methods , Photosensitizing Agents/chemistry , Titanium/chemistry , Aspergillus/enzymology , Catalysis , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Spin Trapping , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...