Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 23(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836925

ABSTRACT

The Gas Electron Multiplier (GEM) was introduced by Fabio Sauli in 1997. This technology is broadly used in current and planned High-Energy Physics (HEP) experiments. One of the key components of these detectors is a readout board, which collects charges amplified by GEM foils and transfers them to readout electronics. The commonly used Cartesian XY readout boards are manufactured from the same type of polyamide film used to produce the GEM foils. The manufacturing process utilizes a deep polyimide etching, similar to the Micro Chemical Vias (MCV) etching process, which is protected by patent. The material prepared in this way is glued onto a rigid substrate and mounted in a detector. The production process was developed at CERN, and the technology has been commercialized to a small extent. Consequently, only a few research centers have the ability to make dedicated readout strips readouts. GEM detectors are characterized by a segmented structure that allows the separation of an electron-multiplying structure from a readout. This feature enables the implementation of a new type of charge reading system without the need to interfere with the GEM foil system. A new approach is proposed to simplify production and reduce the costs of GEM detector readout boards. It is based on the concept of segmental readout structures that are manufactured in standard Printed Circuit Board (PCB) technology. The interconnectors and mountings are located on the back of the bottom, so it is possible to place the readout electronics behind the readout plate. The boards are designed in such a way that they can be panelized into a readout with a more extensive active area. The margin between PCBs is minimalized to approximately 200 µm, which is less than 1% of the 70 × 70 mm2 board area, so the active area is as big as possible. Therefore, this solution gives us the ability to further increase the size of a readout by adding additional segments, which reduces the cost of scaling up the detector size. A few research groups have suggested similar solutions that utilize PCB technology, but currently, only detectors with 1D zigzag readouts have been validated and used. The measurement results of other 2D (XY) redouts using PCB technology have not been presented. The measurements shown and discussed in this paper validated the proposed technology. X-ray radiographs were obtained, validating the ability to use this technology to manufacture readout boards for GEM detectors. In opposition to state-of-the-art readouts, the proposed solution can be manufactured by any PCB manufacturer without using MCV-patented technology. This gives the users flexibility in designing and ordering low-cost custom readouts.

2.
ACS Omega ; 7(38): 33749-33768, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188279

ABSTRACT

The study of neurotransmitters and stress hormones allows the determination of indicators of the current stress load in the body. These species also create a proper strategy of stress protection. Nowadays, stress is a general factor that affects the population, and it may cause a wide range of serious disorders. Abnormalities in the level of neurohormones, caused by chronic psychological stress, can occur in, for instance, corporate employees, health care workers, shift workers, policemen, or firefighters. Here we present a new nanomaterials-based sensors technology development for the determination of neurohormones. We focus on fluorescent sensors/biosensors that utilize nanomaterials, such as quantum dots or carbon nanomaterials. Nanomaterials, owing to their diversity in size and shape, have been attracting increasing attention in sensing or bioimaging. They possess unique properties, such as fluorescent, electronic, or photoluminescent features. In this Review, we summarize new trends in adopting nanomaterials for applications in fluorescent sensors for neurohormone monitoring.

3.
Sensors (Basel) ; 22(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35062586

ABSTRACT

The Low Temperature Cofired Ceramic (LTCC) technology has proven to be highly suitable for 3D microstructures manufacturing in electronic devices due to its excellent electrical and mechanical properties. In this paper, a novel idea of implementing the LTCC structures into high-energy particle detectors technology is proposed. It can be applied in High Energy Physics (HEP) laboratories, where such sophisticated sensors are constantly exposed to particles of the TeV energy range for many years. The most advanced applications of the concept are based on dedicated gas amplifier systems coupled with readout microstructures. Typically, the readout microstructures are made in the Printed Circuit Boards (PCB) technology and processed in a sophisticated and patent-protected way. This article presents the manufacturing process and parameters of the novel microstructures made in the LTCC technology. The structures were implemented into the high-energy particle detector, and the first results are presented.

4.
Sensors (Basel) ; 21(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502707

ABSTRACT

In this paper, we describe a low-cost microwave microfluidic system of ultrahigh sensitivity for detecting small changes in the concentration of polar solutions (liquid dielectrics) in the 2.4 GHz ISM band. Its principle of operation is based on microwave interferometry, which is implemented using planar microstrip lines and integrated microwave components. The key features of this system include small solution intake (<200 µL per measurement), short time of measurement (ca. 20 ms), ultrahigh sensitivity of concentration changes (up to 55 dB/%), and low error of measurement (below 0.1%). The ultrahigh sensitivity was proven experimentally by measurements of the fat content of milk. In addition, it is a user-friendly system due to an effortless and fast calibration procedure. Moreover, it can be made relatively compact (<20 cm2) and features low power consumption (200 mW). Thus, the proposed system is perfect for industrial applications, especially for highly integrated lab-on-chip devices.


Subject(s)
Microfluidics , Microwaves , Calibration , Solutions
5.
Sensors (Basel) ; 21(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801309

ABSTRACT

The constant increase in the number of microfluidic-microwave devices can be explained by various advantages, such as relatively easy integration of various microwave circuits in the device, which contains microfluidic components. To achieve the aforementioned solutions, four trends of manufacturing appear-manufacturing based on epoxy-glass laminates, polymer materials (mostly common in use are polydimethylsiloxane (PDMS) and polymethyl 2-methylpropenoate (PMMA)), glass/silicon substrates, and Low-Temperature Cofired Ceramics (LTCCs). Additionally, the domains of applications the microwave-microfluidic devices can be divided into three main fields-dielectric heating, microwave-based detection in microfluidic devices, and the reactors for microwave-enhanced chemistry. Such an approach allows heating or delivering the microwave power to the liquid in the microchannels, as well as the detection of its dielectric parameters. This article consists of a literature review of exemplary solutions that are based on the above-mentioned technologies with the possibilities, comparison, and exemplary applications based on each aforementioned technology.

6.
Sensors (Basel) ; 20(6)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245163

ABSTRACT

One of the major issues in microfluidic biosensors is biolayer deposition. Typical manufacturing processes, such as firing of ceramics and anodic bonding of silicon and glass, involve exposure to high temperatures, which any biomaterial is very vulnerable to. Therefore, current methods are based on deposition from liquid, for example, chemical bath deposition (CBD) and electrodeposition (ED). However, such approaches are not suitable for many biomaterials. This problem was partially resolved by introduction of ceramic-polymer bonding using plasma treatment. This method introduces an approximately 15-min-long window for biomodification between plasma activation and sealing the system with a polymer cap. Unfortunately, some biochemical processes are rather slow, and this time is not sufficient for the proper attachment of a biomaterial to the surface. Therefore, a novel method, based on plasma activation after biomodification, is introduced. Crucially, the discharge occurs selectively; otherwise, it would etch the biomaterial. Difficulties in manufacturing ceramic biosensors could be overcome by selective surface modification using plasma treatment and bonding to polymer. The area of plasma modification was investigated through contact-angle measurements and Fourier-transform infrared (FTIR) analyses. A sample structure was manufactured in order to prove the concept. The results show that the method is viable.


Subject(s)
Biocompatible Materials/chemistry , Biosensing Techniques , Microfluidics/methods , Polymers/chemistry , Dimethylpolysiloxanes/chemistry , Electroplating/methods
7.
Sensors (Basel) ; 20(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151107

ABSTRACT

A novel fluorescence-sensing pathway for epinephrine (EP) detection was investigated. The ceramic-based miniature biosensor was developed through the immobilization of an enzyme (laccase, tyrosinase) on a polymer-poly-(2,6-di([2,2'-bithiophen]-5-yl)-4-(5-hexylthiophen-2-yl)pyridine), based on low temperature cofired ceramics technology (LTCC). The detection procedure was based on the oxidation of the substrate, i.e., in the presence of the enzyme. An alternative enzyme-free system utilized the formation of a colorful complex between Fe2+ ions and epinephrine molecules. With the optimized conditions, the analytical performance illustrated high sensitivity and selectivity in a broad linear range with a detection limit of 0.14-2.10 nM. Moreover, the strategy was successfully used for an EP injection test with labeled pharmacological samples.

8.
Sensors (Basel) ; 20(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940833

ABSTRACT

A convenient electrochemical sensing pathway was investigated for neurotransmitter detection based on newly synthesized silole derivatives and laccase/horseradish-peroxidase-modified platinum (Pt)/gold (Au) electrodes. The miniature neurotransmitter's biosensors were designed and constructed via the immobilization of laccase in an electroactive layer of the Pt electrode coated with poly(2,6-bis(3,4-ethylenedioxythiophene)-4-methyl-4-octyl-dithienosilole) and laccase for serotonin (5-HT) detection, and a Au electrode modified with the electroconducting polymer poly(2,6-bis(selenophen-2-yl)-4-methyl-4-octyl-dithienosilole), along with horseradish peroxidase (HRP), for dopamine (DA) monitoring. These sensing arrangements utilized the catalytic oxidation of neurotransmitters to reactive quinone derivatives (the oxidation process was provided in the enzymes' presence). Under the optimized conditions, the analytical performance demonstrated a convenient degree of sensitivity: 0.0369 and 0.0256 µA mM-1 cm-2, selectivity in a broad linear range (0.1-200) × 10-6 M) with detection limits of ≈48 and ≈73 nM (for the serotonin and dopamine biosensors, respectively). Moreover, the method was successfully applied for neurotransmitter determination in the presence of interfering compounds (ascorbic acid, L-cysteine, and uric acid).


Subject(s)
Horseradish Peroxidase/metabolism , Laccase/metabolism , Neurotransmitter Agents/analysis , Biosensing Techniques , Catalysis , Dopamine/urine , Electrochemical Techniques , Electrodes , Enzymes, Immobilized/metabolism , Gold/chemistry , Hydrogen-Ion Concentration , Limit of Detection , Microscopy, Atomic Force , Oxidation-Reduction , Platinum/chemistry , Polymers/chemistry , Serotonin/urine , Silicon Compounds/chemistry
9.
Sensors (Basel) ; 19(3)2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30704068

ABSTRACT

This paper compares two types of microfluidic sensors that are designed for operation in ISM (Industrial, Scientific, Medical) bands at microwave frequencies of 2.45 GHz and 5.8 GHz. In the case of the first sensor, the principle of operation is based on the resonance phenomenon in a microwave circuit filled with a test sample. The second sensor is based on the interferometric principle and makes use of the superposition of two coherent microwave signals, where only one goes through a test sample. Both sensors are monolithic structures fabricated using low temperature co-fired ceramics (LTCCs). The LTCC-based microwave-microfluidic sensor properties are examined and compared by measuring their responses for various concentrations of two types of test fluids: one is a mixture of water/ethanol, and the other is dopamine dissolved in a buffer solution. The experiments show a linear response for the LTCC-based microwave-microfluidic sensors as a function of the concentration of the components in both test fluids.

10.
Nanomaterials (Basel) ; 9(2)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717393

ABSTRACT

Fundamentals of quantum dots (QDs) sensing phenomena show the predominance of these fluorophores over standard organic dyes, mainly because of their unique optical properties such as sharp and tunable emission spectra, high emission quantum yield and broad absorption. Moreover, they also indicate no photo bleaching and can be also grown as no blinking emitters. Due to these properties, QDs may be used e.g., for multiplex testing of the analyte by simultaneously detecting multiple or very weak signals. Physico-chemical mechanisms used for analyte detection, like analyte stimulated QDs aggregation, nonradiative Förster resonance energy transfer (FRET) exhibit a number of QDs, which can be applied in sensors. Quantum dots-based sensors find use in the detection of ions, organic compounds (e.g., proteins, sugars, volatile substances) as well as bacteria and viruses.

11.
Sensors (Basel) ; 18(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042294

ABSTRACT

The clinical applications of sensing tools (i.e., biosensors) for the monitoring of physiologically important analytes are very common. Nowadays, the biosensors are being increasingly used to detect physiologically important analytes in real biological samples (i.e., blood, plasma, urine, and saliva). This review focuses on biosensors that can be applied to continuous, time-resolved measurements with fluorescence. The material presents the fluorescent biosensors for the detection of neurotransmitters, hormones, and other human metabolites as glucose, lactate or uric acid. The construction of microfluidic devices based on fluorescence uses a variety of materials, fluorescent dyes, types of detectors, excitation sources, optical filters, and geometrical systems. Due to their small size, these devices can perform a full analysis. Microfluidics-based technologies have shown promising applications in several of the main laboratory techniques, including blood chemistries, immunoassays, nucleic-acid amplification tests. Of the all technologies that are used to manufacture microfluidic systems, the LTCC technique seems to be an interesting alternative. It allows easy integration of electronic and microfluidic components on a single ceramic substrate. Moreover, the LTCC material is biologically and chemically inert, and is resistant to high temperature and pressure. The combination of all these features makes the LTCC technology particularly useful for implementation of fluorescence-based detection in the ceramic microfluidic systems.


Subject(s)
Biosensing Techniques/methods , Body Fluids/chemistry , Fluorescent Dyes/analysis , Animals , Humans , Lab-On-A-Chip Devices , Microfluidics
12.
Micromachines (Basel) ; 8(11)2017 Oct 26.
Article in English | MEDLINE | ID: mdl-30400507

ABSTRACT

Microwave treatment can reduce the time of selected syntheses, for instance of gold nanoparticles (AuNPs), from several hours to a few minutes. We propose a microfluidic structure for enhancing the rate of chemical reactions using microwave energy. This reactor is designed to control microwave energy with much higher accuracy than in standard devices. Thanks to this, the influence of microwave irradiation on the rate of chemical reactions can be investigated. The reactor consists of a transmission line surrounded by ground metallization. In order to deliver microwave energy to the fluid under test efficiently, matching networks are used and optimized by means of numerical methods. The monolithic device is fabricated in the low temperature co-fired ceramics (LTCC) technology. This material exhibits excellent microwave performance and is resistant to many chemical substances as well as high temperatures. Fabrication of the devices is described in detail. Measurements of microwave parameters are performed and differences between simulation and experiment results are discussed. Finally, the usefulness of the proposed device is proved in exemplary synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL