Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 973673, 2022.
Article in English | MEDLINE | ID: mdl-36479132

ABSTRACT

Asthmatics are more susceptible to viral infections than healthy individuals and are known to have impaired innate anti-viral defences. Influenza A virus causes significant morbidity and mortality in this population. Immuno-modulatory regulators (IMRs) such as PD-1 are activated on T cells following viral infection as part of normal T cell activation responses, and then subside, but remain elevated in cases of chronic exposure to virus, indicative of T cell exhaustion rather than activation. There is evidence that checkpoint inhibition can enhance anti-viral responses during acute exposure to virus through enhancement of CD8+T cell function. Although elevated PD-1 expression has been described in pulmonary tissues in other chronic lung diseases, the role of IMRs in asthma has been relatively unexplored as the basis for immune dysfunction. We first assessed IMR expression in the peripheral circulation and then quantified changes in IMR expression in lung tissue in response to ex-vivo influenza infection. We found that the PD-1 family members are not significantly altered in the peripheral circulation in individuals with severe asthma but are elevated in pulmonary tissues following ex-vivo influenza infection. We then applied PD-1 Mab inhibitor treatment to bronchial biopsy tissues infected with influenza virus and found that PD-1 inhibition was ineffective in asthmatics, but actually increased infection rates in healthy controls. This study, therefore, suggests that PD-1 therapy would not produce harmful side-effects when applied in people with severe asthma, but could have important, as yet undescribed, negative effects on anti-viral responses in healthy individuals that warrant further investigation.


Subject(s)
Asthma , Influenza, Human , Programmed Cell Death 1 Receptor , Humans , Influenza, Human/complications , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Asthma/metabolism , Asthma/virology , Disease Progression , CD8-Positive T-Lymphocytes
2.
Nat Immunol ; 23(5): 743-756, 2022 05.
Article in English | MEDLINE | ID: mdl-35437326

ABSTRACT

Phenotypic and transcriptional profiling of regulatory T (Treg) cells at homeostasis reveals that T cell receptor activation promotes Treg cells with an effector phenotype (eTreg) characterized by the production of interleukin-10 and expression of the inhibitory receptor PD-1. At homeostasis, blockade of the PD-1 pathway results in enhanced eTreg cell activity, whereas during infection with Toxoplasma gondii, early interferon-γ upregulates myeloid cell expression of PD-L1 associated with reduced Treg cell populations. In infected mice, blockade of PD-L1, complete deletion of PD-1 or lineage-specific deletion of PD-1 in Treg cells prevents loss of eTreg cells. These interventions resulted in a reduced ratio of pathogen-specific effector T cells: eTreg cells and increased levels of interleukin-10 that mitigated the development of immunopathology, but which could compromise parasite control. Thus, eTreg cell expression of PD-1 acts as a sensor to rapidly tune the pool of eTreg cells at homeostasis and during inflammatory processes.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , Toxoplasmosis, Animal , Animals , B7-H1 Antigen/immunology , Homeostasis , Interleukin-10/immunology , Mice , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology
3.
Mol Cancer Ther ; 19(6): 1298-1307, 2020 06.
Article in English | MEDLINE | ID: mdl-32229606

ABSTRACT

The programmed cell death 1 (PD-1) pathway represents a major immune checkpoint, which may be engaged by cells in the tumor microenvironment to overcome active T-cell immune surveillance. Pembrolizumab (Keytruda®, MK-3475) is a potent and highly selective humanized mAb of the IgG4/kappa isotype designed to directly block the interaction between PD-1 and its ligands, PD-L1 and PD-L2. This blockade enhances the functional activity of T cells to facilitate tumor regression and ultimately immune rejection. Pembrolizumab binds to human and cynomolgus monkey PD-1 with picomolar affinity and blocks the binding of human and cynomolgus monkey PD-1 to PD-L1 and PD-L2 with comparable potency. Pembrolizumab binds both the C'D and FG loops of PD-1. Pembrolizumab overcomes human and cynomolgus monkey PD-L1-mediated immune suppression in T-cell cultures by enhancing IL2 production following staphylococcal enterotoxin B stimulation of healthy donor and cancer patient cells, and IFNγ production in human primary tumor histoculture. Ex vivo and in vitro studies with human and primate T cells show that pembrolizumab enhances antigen-specific T-cell IFNγ and IL2 production. Pembrolizumab does not mediate FcR or complement-driven effector function against PD-1-expressing cells. Pembrolizumab displays dose-dependent clearance and half-life in cynomolgus monkey pharmacokinetic and toxicokinetic studies typical for human IgG4 antibodies. In nonhuman primate toxicology studies, no findings of toxicologic significance were observed. The preclinical data for pembrolizumab are consistent with the clinical anticancer activity and safety that has been demonstrated in human clinical trials.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Leukocytes, Mononuclear/drug effects , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/drug effects , Animals , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Female , Humans , Immune Checkpoint Inhibitors/pharmacokinetics , Immune Checkpoint Inhibitors/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Macaca fascicularis , Mice , Mice, Inbred BALB C , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors , Programmed Cell Death 1 Ligand 2 Protein/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tissue Distribution , Toxicity Tests
4.
Immunity ; 49(2): 342-352.e5, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30097293

ABSTRACT

Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3+ regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1ß production from intestinal-resident CX3CR1+ macrophages but not CD103+ dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1+ macrophage production of IL-23 and IL-1ß. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)-an immune checkpoint receptor-expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1+ tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.


Subject(s)
Antigens, CD/metabolism , CX3C Chemokine Receptor 1/metabolism , Colitis/immunology , Colitis/pathology , Interleukin-23 Subunit p19/immunology , Intestinal Mucosa/pathology , Macrophages/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cells, Cultured , Dendritic Cells/immunology , Forkhead Transcription Factors/metabolism , Histocompatibility Antigens Class II/immunology , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/transplantation , Lymphocyte Activation Gene 3 Protein , Interleukin-22
5.
J Exp Med ; 213(10): 2147-66, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27551155

ABSTRACT

Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4(+) T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4(+) T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD.


Subject(s)
Cell Polarity , Dendritic Cells/cytology , Immunization , Interleukin-23/metabolism , Interleukins/metabolism , Keratinocytes/metabolism , Skin/immunology , Toll-Like Receptor 4/metabolism , Adult , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Movement , Cell Proliferation , Dendritic Cells/metabolism , Epidermis/pathology , Female , Hematopoiesis , Humans , Ligands , Lymph Nodes/metabolism , Mice, Inbred BALB C , Skin/pathology , Interleukin-22
7.
PLoS One ; 10(7): e0131444, 2015.
Article in English | MEDLINE | ID: mdl-26168305

ABSTRACT

CD4+ T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection. However, the effector mechanisms leading to reductions in the gastric bacterial loads of vaccinated mice remain unclear. We have investigated the function of IFN-γ and IL-17A for vaccine-induced protection and inflammation (gastritis) using IFN-γ-gene-knockout (IFN-γ-/-) mice, after sublingual or intragastric immunization with H. pylori lysate antigens and cholera toxin. Bacteria were enumerated in the stomachs of mice and related to the gastritis score and cellular immune responses. We report that sublingually and intragastrically immunized IFN-γ-/- mice had significantly reduced bacterial loads similar to immunized wild-type mice compared to respective unimmunized infection controls. The reduction in bacterial loads in sublingually and intragastrically immunized IFN-γ-/- mice was associated with significantly higher levels of IL-17A in stomach extracts and lower gastritis scores compared with immunized wild-type mice. To study the role of IL-17A for vaccine-induced protection in sublingually immunized IFN-γ-/- mice, IL-17A was neutralized in vivo at the time of infection. Remarkably, the neutralization of IL-17A in sublingually immunized IFN-γ-/- mice completely abolished protection against H. pylori infection and the mild gastritis. In summary, our results suggest that IFN-γ responses in the stomach of sublingually immunized mice promote vaccine-induced gastritis, after infection with H. pylori but that IL-17A primarily functions to reduce the bacterial load.


Subject(s)
Helicobacter Infections/immunology , Helicobacter Infections/prevention & control , Inflammation/complications , Inflammation/pathology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Animals , Antigens, Bacterial/immunology , Cell Proliferation , Gene Expression Regulation , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori , Immunization , Inflammation/immunology , Inflammation/microbiology , Interferon-gamma/deficiency , Lymph Nodes/pathology , Mice, Inbred C57BL , Neutralization Tests , Spleen/pathology , Stomach/microbiology , Stomach/pathology
8.
Clin Transl Gastroenterol ; 3: e10, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-23238132

ABSTRACT

OBJECTIVES: Interleukin-23 (IL-23) has emerged as a new therapeutic target for the treatment of inflammatory bowel disease (IBD). As biomarkers of disease state and treatment efficacy are becoming increasingly important in drug development, we sought to identify efficacy biomarkers for anti-IL-23 therapy in Crohn's disease (CD). METHODS: Candidate IL-23 biomarkers, downstream of IL-23 signaling, were identified using shotgun proteomic analysis of feces and colon lavages obtained from a short-term mouse IBD model (anti-CD40 Rag2(-/-)) treated preventively with monoclonal antibodies (mAbs) to the IL-23 receptor (IL-23R). The biomarkers were then measured in an IBD T-cell transfer model treated therapeutically with a mAb to IL-23 (p19), confirming their association with IBD. To assess the clinical relevance of these markers, we assessed their concentrations in clinical serum, colon tissue, and feces from CD patients. RESULTS: We identified 57 proteins up or downregulated in diseased animals that returned to control values when the mice were treated with mAbs to IL-23R. Among those, S100A8, S100A9, regenerating protein 3ß (REG), REG3γ, lipocalin 2 (LCN2), deleted in malignant tumor 1 (DMBT1), and macrophage migration inhibitory factor (MIF) mRNA levels correlated with disease score and dose titration of mAbs to IL-23R or IL-23(p19). All biomarkers, except DMBT1, were also downregulated after therapeutic administration of mAbs to IL-23(p19) in a T-cell transfer IBD mouse model. In sera from CD patients, we confirmed a significant upregulation of S100A8/A9 (43%), MIF (138%), pancreatitis-associated protein (PAP, human homolog of REG3ß/γ; 49%), LCN2 (520%), and CCL20 (1280%), compared with control samples, as well as a significant upregulation of S100A8/A9 (887%), PAP (401%), and LCN2 (783%) in human feces from CD patients compared with normal controls. CONCLUSIONS: These studies identify multiple protein biomarkers downstream of IL-23 that could be valuable tools to assess the efficacy of this new therapeutic agent.Clinical and Translational Gastroenterology (2012) 3, e10; doi:10.1038/ctg.2012.2; published online 16 February 2012.

9.
J Exp Med ; 208(2): 383-94, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21300913

ABSTRACT

Dendritic cells (DCs) in the thymus (tDCs) are predominantly accumulated in the medulla and contribute to the establishment of self-tolerance. However, how the medullary accumulation of tDCs is regulated and involved in self-tolerance is unclear. We show that the chemokine receptor XCR1 is expressed by tDCs, whereas medullary thymic epithelial cells (mTECs) express the ligand XCL1. XCL1-deficient mice are defective in the medullary accumulation of tDCs and the thymic generation of naturally occurring regulatory T cells (nT reg cells). Thymocytes from XCL1-deficient mice elicit dacryoadenitis in nude mice. mTEC expression of XCL1, tDC medullary accumulation, and nT reg cell generation are diminished in Aire-deficient mice. These results indicate that the XCL1-mediated medullary accumulation of tDCs contributes to nT reg cell development and is regulated by Aire.


Subject(s)
Chemokines, C/biosynthesis , Dendritic Cells/immunology , Self Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Transcription Factors/metabolism , Animals , Chemokines/immunology , Chemokines, C/genetics , Chemotaxis/immunology , Dacryocystitis/etiology , Dacryocystitis/immunology , Dendritic Cells/cytology , Flow Cytometry , Fluorescent Antibody Technique , Image Processing, Computer-Assisted , Mice , Mice, Nude , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , AIRE Protein
10.
Infect Immun ; 79(2): 879-86, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21078851

ABSTRACT

CD4(+) T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection in mice. Less is known about the relative contributions of individual cell subpopulations, such as T(h)1 and T(h)17 cells, and their associated cytokines. The aim of the present study was to find immune correlates to vaccine-induced protection and further study their role in protection against H. pylori infection. Immunized and unimmunized mice were challenged with H. pylori, and immune responses were compared. Vaccine-induced protection was assessed by measuring H. pylori colonization in the stomach. Gastric gene expression of T(h)1- and/or T(h)17-associated cytokines was analyzed by quantitative PCR, and contributions of individual cytokines to protection were evaluated by antibody-mediated in vivo neutralization. By analyzing immunized and unimmunized mice, a significant inverse correlation between the levels of interleukin-12p40 (IL-12p40), tumor necrosis factor alpha (TNF), gamma interferon (IFN-γ), and IL-17 gene expression and the number of H. pylori bacteria in the stomachs of individual animals after challenge could be demonstrated. In a kinetic study, upregulation of TNF, IFN-γ, and IL-17 coincided with vaccine-induced protection at 7 days after H. pylori challenge and was sustained for at least 21 days. In vivo neutralization of these cytokines during the effector phase of the immune response revealed a significant role for IL-17, but not for IFN-γ or TNF, in vaccine-induced protection. In conclusion, although both T(h)1- and T(h)17-associated gene expression in the stomach correlate with vaccine-induced protection against H. pylori infection, our study indicates that mainly T(h)17 effector mechanisms are of critical importance to protection.


Subject(s)
Bacterial Vaccines/immunology , Cytokines/metabolism , Gastric Mucosa/metabolism , Helicobacter Infections/prevention & control , Helicobacter pylori , Interleukin-17/metabolism , Animals , Cytokines/genetics , Female , Gene Expression Regulation/immunology , Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Stomach/immunology , Stomach/microbiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
11.
Immunity ; 31(5): 700-2, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19932069

ABSTRACT

In this issue of Immunity, Lin et al. (2009) implicate interleukin-17 in the regulation of T helper 1 (Th1) cell immunity against Francisella tularensis. These findings add a unique twist to the cytokine regulation of T cell differentiation and function.


Subject(s)
Francisella tularensis , Interleukin-17/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Animals , Cell Differentiation , T-Lymphocytes, Helper-Inducer/cytology , Th1 Cells/cytology
12.
Exp Lung Res ; 34(10): 631-62, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19085563

ABSTRACT

Chronic obstructive pulmonary diseases (COPD) may increase air pollution-related mortality. The relationship of immune mechanisms to mortality caused by fine particulates in healthy and COPD populations is incompletely understood. The objective of this study was to determine whether fine particulates from a single biomass fuel alter stress and inflammation biomarkers in people with COPD. Healthy and COPD subjects were exposed to smoke in a controlled indoor setting. Immune responses were quantified by measuring cell surface marker expression with flow-cytometric analysis and mRNA levels with quantitative reverse transcriptase-polymerase chain reactions in whole blood before and after exposure. Preexposure COPD subjects had more leukocytes, mainly CD14(+) monocytes and neutrophils, but fewer CD3(+) T cells. Fifty-seven of 186 genes were differentially expressed between healthy and COPD subjects' peripheral blood mononuclear cells (PBMCs). Of these, only nuclear factor (NF)-kappa B1, TIMP-1, TIMP-2, and Duffy genes were up-regulated in COPD subjects. At 4 hours post smoke exposure, monocyte levels decreased only in healthy subjects. Fifteen genes, particular to inflammation, immune response, and cell-to-cell signaling, were differentially expressed in COPD subjects, versus 4 genes in healthy subjects. The authors observed significant differences in subjects' PBMCs, which may elucidate the adverse effects of air pollution particulates on people with COPD.


Subject(s)
Biomass , Particulate Matter/adverse effects , Pulmonary Disease, Chronic Obstructive/immunology , Smoke/adverse effects , Adult , Aged , Aged, 80 and over , Biomarkers , Cardiovascular Diseases/etiology , Flow Cytometry , Gene Expression Profiling , HLA-DR Antigens/analysis , Humans , Immunophenotyping , Lipopolysaccharide Receptors/analysis , Middle Aged , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/metabolism , Reverse Transcriptase Polymerase Chain Reaction
13.
Annu Rev Immunol ; 25: 193-219, 2007.
Article in English | MEDLINE | ID: mdl-17129180

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells that have the ability to sense infection and tissue stress, sample and present antigen to T lymphocytes, and induce different forms of immunity and tolerance. The functional versatility of DCs depends on their remarkable ability to translate collectively the information from both the invading microbes and their resident tissue microenvironments and then make an appropriate immune response. Recent progress in understanding TLR biology has illuminated the mechanisms by which DCs link innate and adaptive antimicrobial immune responses. However, how tissue microenvironments shape the function of DCs has remained elusive. Recent studies of TSLP (thymic stromal lymphopoietin), an epithelial cell-derived cytokine that strongly activates DCs, provide evidence at a molecular level that epithelial cells/tissue microenvironments directly communicate with DCs. We review recent progress on how TSLP expressed within thymus and peripheral lymphoid and nonlymphoid tissues regulates DC-mediated central tolerance, peripheral T cell homeostasis, and inflammatory Th2 responses.


Subject(s)
Antigen Presentation/immunology , Cell Differentiation/immunology , Cytokines/immunology , Dendritic Cells/immunology , Epithelial Cells/immunology , Th2 Cells/immunology , Animals , Homeostasis/immunology , Humans , Immune Tolerance , Immunity, Innate , Infections/immunology , Inflammation/immunology , Lymphoid Tissue/immunology , Toll-Like Receptors/immunology , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...