Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Talanta ; 278: 126444, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38924987

ABSTRACT

Time elapsed since bloodstain deposition is a crucial aspect in forensic investigations, where non-destructive spectroscopic methods play a pivotal role. While extensive research has been conducted by UV-Vis spectroscopy, showcasing its utility in specific cases, there is still a paucity of studies based on NIR spectroscopy, which has the potential to overcome the limitations of the UV-Vis-based methods. To compensate for this disequilibrium, the present study aimed to evaluate the NIR applicability for estimating the age of forensic bloodstains and develop a performance comparison with UV-Vis spectroscopy methods. Capillary blood was sampled and subjected to a 16-day aging, during which it was repeatedly analyzed using both spectroscopic methods. Subsequently, chemometric analysis was applied to process the spectral data and independently assess the methods' performance. Classical preprocessing transforms (i.e., Savitzky-Golay derivatives and SNV transform) were used together with more targeted strategies, such as class centering, whose benefit was highlighted by PCA. Lastly, PLS regression models were computed to evaluate the effectiveness of both spectroscopic methods in estimating the time elapsed since blood trace deposition. Comparable root mean square errors in prediction (RMSEP) - 40 and 55 h for UV-Vis and NIR spectroscopy, respectively - were observed for both techniques, featuring an improvement with respect to the existing literature for NIR spectroscopy. Data fusion strategies for a multi-instrumental platform were also explored, evaluating advantages and disadvantages of low-level and mid-level approaches. The results indicated that NIR spectroscopy integrated with adequate chemometric strategies deserves increased appreciation in forensic bloodstain dating.

2.
Talanta ; 275: 126137, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677163

ABSTRACT

The present research is focused on the proposal of use of flow-modulation comprehensive two-dimensional enantio-gas chromatography (FM eGC × GC) as a valid, flexible, and possibly superior alternative to heart-cutting multidimensional enantio-GC (eMDGC). The latter, a technique of demonstrated utility, is used specifically for the targeted separation of chiral compounds, whereas FM eGC × GC can produce both targeted and high-resolution untargeted information in a single run. It is clearly possible to use eMDGC for untargeted analysis, often with a flame ionization detector (stand-by analysis), to monitor a first-dimension (1D) separation, of much lower peak capacity compared to FM eGC × GC. If eMDGC is used with mass spectrometry (MS), it is normally exploited to monitor the second-dimension (2D) separation. The analytical instrument consisted of automated solid-phase microextraction (SPME), and a low duty-cycle FM eGC × GC system (with time-of-flight MS), equipped with an enantioselective 1D column (2,3-di-O-methyl-6-t-butyl silyl ß-cyclodextrin derivative) and a 2D polyethylene glycol one. Ten Marsala wines were subjected to analysis, for the determination of chiral lactones (many at the low ppb level, due to the high concentration capacity of SPME) and for general analyte profiling. In many instances, highly complex chromatograms were attained, with statistical analysis (ANOVA-simultaneous component analysis and partial least squares discriminant analysis) used for sample differentiation.

3.
Commun Chem ; 6(1): 54, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041241

ABSTRACT

Many of the rarest prehistoric bones found by archaeologists are enormously precious and are considered to be part of our cultural and historical patrimony. Radiocarbon dating is a well-established technique that estimates the ages of bones by analysing the collagen still present. However, this method is destructive, and its use must be limited. In this study, we used imaging technology to quantify the presence of collagen in bone samples in a non-destructive way to select the most suitable samples (or sample regions) to be submitted to radiocarbon dating analysis. Near-infrared spectroscopy (NIR) that was connected to a camera with hyperspectral imaging (HSI) was used along with a chemometric model to create chemical images of the distribution of collagen in ancient bones. This model quantifies the collagen at every pixel and thus provides a chemical mapping of collagen content. Our results will offer significant advances for the study of human evolution as we will be able to minimise the destruction of valuable bone material, which is under the protection and enhancement of European cultural heritage and thus allow us to contextualise the valuable object by providing an accurate calendar age.

4.
Anal Chim Acta ; 1239: 340710, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628716

ABSTRACT

The new challenge in the investigation of cultural heritage is the possibility to obtain stratigraphical information about the distribution of the different organic and inorganic components without sampling. In this paper recently commercialized analytical set-up, which is able to co-register VNIR, SWIR, and XRF spectral data simultaneously, is exploited in combination with an innovative multivariate and multiblock high-throughput data processing for the analysis of multilayered paintings. The instrument allows to obtain elemental and molecular information from superficial to subsurface layers across the investigated area. The chemometric strategy proved to be highly efficient in data reduction and for the extraction and integration of the most useful information coming from the three different spectroscopies, also filling the gap between data acquisition and data understanding through the combination of principal component analysis (PCA), brushing, correlation diagrams and maps (within and between spectral blocks) on the low-level fused. In particular, correlation diagrams and maps provide useful information for the reconstruction of a stratigraphic structure without the need to take any sample, thanks to the effective account for inter-correlation among data (variables), which is able to effectively characterize the possible combinations of components located in the same depth level. The highly innovative technology and the data processing strategy are applied for the multi-level characterization of a complex painting reproduction as an illustrative pilot study.


Subject(s)
Hyperspectral Imaging , Paintings , Pilot Projects , Principal Component Analysis , Chemometrics
5.
Food Chem ; 397: 133842, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35933752

ABSTRACT

The European Food Safety Authority asked for novel approaches for identifying mechanically separated meat (MSM) in meat products, due to food safety concern. In this study, a novel approach based on multivariate analysis of 43 trace elements in meat products is described. Overall, 27 trace elements and 16 rare earth elements were determined by using ICP-MS after sample mineralization of 100 meat samples, composed of different percentages of MSM, obtained at low and high pressure, and without MSM. After development and optimization, the multivariate approach was validated by analyzing and then classifying 10 "blind" meat samples, obtaining method accuracy equal to 90%. Thus, the applicability of this new analytical approach was demonstrated. The method represents a significant improvement for this type of determination, especially when MSM is obtained at low pressure, since this product is characterized by chemical characteristics very similar to fresh meat.


Subject(s)
Metals, Rare Earth , Trace Elements , Mass Spectrometry/methods , Meat/analysis , Multivariate Analysis , Trace Elements/analysis
6.
Talanta ; 245: 123472, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35462136

ABSTRACT

From a criminalistic point of view, the accurate dating of biological traces found at the crime scene, together with its compatibility with the estimated crime perpetration timeframe, enables to limit the number of suspects by assessing their alibis and clarifying the sequence of events. The present study delineates, for the first time, the possibility of dating biological fluids such as semen and urine, as well as blood traces, by using a novel non-destructive analytical strategy based on hyperspectral imaging in the near infared region (HSI-NIR), coupled with multivariate regression methods. Investigated aspects of the present study include not only the progressive degradation of the biological trace itself, but also the effects of its interactions with the support on which it is absorbed, in particular the hydrophilic vs. hydrophobic character of fabric tissues. Results are critically discussed, highlighting potential and limitations of the proposed approach for a practical implementation.


Subject(s)
Body Fluids , Hyperspectral Imaging , Least-Squares Analysis , Regression Analysis , Semen , Spectroscopy, Near-Infrared
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120396, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34592685

ABSTRACT

Water activity is an important phenomenon not yet explained in terms of water molecular structure. This paper aims to find the relationship between the water activity and water molecular structure of the rice germ, based on its spectral pattern which can be measured using non-destructive technology. Aquaphotomics near-infrared spectroscopy was used to study rice germ stored at different levels of water activity and atmosphere. The findings show that state of the rice germ is governed by the water activity upon storage, which is defined by the structure of water within germ matrix. The structure of water can be described solely by the absorbance spectral pattern at the following absorbance bands: proton hydrates, hydration shells and water vapor (1364, 1375 and 1382 nm), trapped water (1392 nm), free water (1410 nm), hydration water (1425 nm), adsorbed water (1455 nm), non-bonded hydroxyl (1436 nm) and bound water (1520 nm).


Subject(s)
Oryza , Spectroscopy, Near-Infrared , Biomarkers , Molecular Structure , Preservation, Biological
8.
Chemosphere ; 286(Pt 3): 131861, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34399269

ABSTRACT

Contamination by microplastics (MP) represents a critical environmental challenge with potential consequences at ecosystem, economic and societal levels. As the marine system is the final sink for MP, there is an urgent need to develop methods for the monitoring of synthetic particles in different marine compartments and sample matrices. Extensive evaluations are hindered by time and costs associated with to conventional MP spectroscopic analyses. The potential of near infrared hyperspectral imaging (NIR-HSI) has been recently evaluated. However, NIR-HSI has been poorly studied so far, limitedly to the detection of large particles (>300 µm), and its capability for direct characterization of MP in real marine matrices has not been considered yet. In the present study, a rapid near infrared hyperspectral imaging (NIR-HSI) method, coupled with a customised normalised difference image (NDI) strategy for data processing, is presented and used to detect MP down to 50 µm in environmental matrices. The proposed method is largely automated, without the need for extensive data processing, and enabled a successful identification of different polymers, both in surface water and mussel soft tissue samples, as well as on real field samples with environmentally occurring MP. NIR-HSI is applied directly on filters, without the need for particles pre-sorting or multiple sample purifications, avoiding time consuming procedures, airborne contaminations, particle degradation and loss. Thanks to the time and cost effectiveness, a large-scale implementation of this method would enable to extensively monitor the MP presence in natural environments for assessing the ecological risk related to MP contamination.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Hyperspectral Imaging , Plastics , Polymers , Water Pollutants, Chemical/analysis
9.
Food Chem ; 343: 128547, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33267989

ABSTRACT

Cheese represents one of the most complex food matrices, for the high number of factors contributing to the chemical composition, and so its evaluation represents an important analytical challenge. The present study describes an innovative and non-destructive analytical approach, based on hyperspectral imaging in the near-infrared region (HSI-NIR) and multivariate pattern recognition, to study and monitor the extent - spatial and temporal - of biochemical phenomena responsible for cheese ripening. NIR spectral bands characterising dehydration, proteolysis and lipolysis were individuated and studied by exploiting a representative sample set of characteristic cheeses. The information obtained was employed to develop score maps based on principal component analysis (PCA), which permitted to monitor and visualise the ripening of Formaggetta, a commercial semi-hard cheese typical of Liguria, an Italian region, providing a deep understanding of the evolution of dehydration, proteolysis and lipolysis during the maturation period that precedes the placing on the market.


Subject(s)
Cheese/analysis , Food Handling/methods , Lipolysis , Principal Component Analysis , Proteolysis , Spectroscopy, Near-Infrared
10.
Chemosphere ; 260: 127655, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688326

ABSTRACT

Microplastic (MP) contamination is a critical environmental challenge with a strong impact on the ecosystems, economy and potentially for human health. The smaller the MP size, the greater is the environmental risks as well as the analytical difficulties in detecting and characterising the particles. .We propose a rapid near infrared hyperspectral imaging (NIR-HSI) method that enables the chemical identification and characterisation of small MP (down to 80 µm) in aquatic samples, directly on filters, with no pre-sorting step needed. By considerably reducing the procedural steps, the time of analysis and costs our method addresses the urgent need of cost-effective and robust tools for extensive monitoring of MP in natural systems.


Subject(s)
Environmental Monitoring/methods , Microplastics/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Humans , Plastics
11.
Talanta ; 215: 120911, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32312455

ABSTRACT

The importance of detecting minute biological traces in forensic evidences feeds the continuous interest towards the development of new dedicated technologies both sensitive and reliable. The present study describes the opportunity to combine chemical properties derived from NIR signals with spatial features typical of RGB images by means of hyperspectral imaging (HSI). An analytical procedure based on HSI data collection and their multivariate processing followed by normalized difference images (NDI) is proposed as a screening method to highlight otherwise invisible traces of biological fluids on different supports in view of their collection for DNA analysis. The pattern features identified inside the NDI provided insight into the nature of the biological trace, on the basis of the wavelength at which the stain is highlighted and irrespective of the support on which the stain is deposited. In particular, the procedure allowed to detect and distinguish traces (i.e., 10 and 20 µL volumes) of dehydrated blood, urine, and semen on glass, paper, cotton, denim and polyblend fabric. Beside the simulated specimens used to develop and test the protocol, its robustness was demonstrated also on real and unknown validation samples, confirming its feasibility in some real case studies. An interesting evolution of the proposed strategy is to lay the scientific foundations for the development of a handheld device directly applicable in field.


Subject(s)
Body Fluids/chemistry , DNA/analysis , Forensic Medicine , Optical Imaging , Humans , Infrared Rays , Multivariate Analysis , Particle Size , Surface Properties
12.
Talanta ; 209: 120575, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892014

ABSTRACT

The present study describes a multivariate strategy that can be used for automatic on-site processing of reflection mode macro FTIR mapping (MA-rFTIR) data obtained during investigation of artworks. The chemometric strategy is based on the integration of principal component analysis (PCA) with a clustering approach in the space subtended by the three lowest-order principal components and allows to automatically identify the regions of interest (ROIs) of the area scanned and to extract the average FTIR spectra related to each ROI. Thanks to the automatic data management, in-field HSI (hyperspectral imaging)-based analyses may be performed even by staff lacking specific advanced chemometric expertise, as it is sometimes the case for conservation scientists or conservators with a scientific background. MA-rFTIR was only recently introduced in the conservation field and, in this work the technique was employed to characterize the surface of metallic artefacts. The analytical protocol was employed as part of a rapid procedure to evaluate the conservation state and the performance of cleaning methods on bronze objects. Both activities are commonly part of restoration campaigns of bronzes and require an on-site analytical procedure for efficient and effective diagnosis. The performance of the method was first evaluated on aged standard samples (bronzes with a layer of green basic copper hydroxysulphate, treated with different organic coatings) and then scrutinized in situ on areas of the 16th century Neptune fountain statue (Piazza del Nettuno, Bologna, Italy) by Gianbologna.

13.
Food Chem ; 305: 125512, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31610422

ABSTRACT

This study represents the first attempt to combine mid infrared (MIR) spectroscopy and multivariate data processing for prediction of alcohol degree, sugars content and total acidity in straw wine. 302 Italian samples, representing different vintages, production regions and grape varieties, were analysed using FT-MIR spectroscopy and reference methods. New regression functions based on a combination of Orthogonal Signal Correction and Partial Least Squares regression are proposed for prediction of quality parameters: this approach allows overcoming the issue of matrix complexity, reducing spectral interferences and enhancing the information embodied in fingerprinting data. The models proposed are characterised by an excellent reliability, with low error in prediction (alcohol: 0.28%; sugars: 9.9 g/L; acidity: 0.29 g/L) comparable both to reference methods and table wine models. Results demonstrate that vibrational spectroscopy, combined with a proper multivariate data strategy, represents a suitable strategy for the quick and non-destructive assessment of quality parameters of straw wine.


Subject(s)
Food Quality , Informatics/methods , Spectroscopy, Fourier Transform Infrared , Wine/analysis , Least-Squares Analysis , Multivariate Analysis , Reproducibility of Results , Vitis/chemistry
14.
Talanta ; 206: 120208, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514827

ABSTRACT

Evaluating the possibility of extending shelf life of rice germ (a by-product of rice milling process) by reducing water activity in combination with storage atmosphere packaging, without any heat treatment, is the aim of the present study. Samples at different water activities (0.55, 0.45 and 0.36) were packed in air, argon or under vacuum, and stored at 27 °C for 150 days. To the aim, a non-targeted approach was applied by means of an FT-NIR spectrometer in reflectance with a rotating sample holder and a portable electronic nose, equipped with 10 non-specific sensors. For understanding the impact of the factors under study on the rice germ shelf life, a modified mid-level data fusion approach was applied to enhance the information most correlated with time. Moreover, Principal Component Analysis was applied on fused data to follow samples evolution during storage and identify different clusters according to the storage conditions. The rice germ case study allowed to better understand the information captured by the non-specific sensors: a 2D correlation map was developed combining the e-nose data with the NIR spectral information, highlighting relationships among NIR absorption bands and classes of chemical compounds inducing e-nose responses. A data fusion approach highlighted the importance of water activity on rice germ storage, while no interesting differences were ascribable to storage atmosphere packaging systems. In terms of correlation, the sensors could be divided in two groups, negatively inter-correlated: sensors ascribable to aromatic compounds (WC) and correlated with the NIR band around 4800-4900 cm-1 (N-H bending of primary amides, typical for peptides coming from protein hydrolysis); broad-range response sensors (WS), linked with the NIR band at 5128 cm-1 (second overtone of CO stretching of esters).


Subject(s)
Edible Grain/chemistry , Food Storage , Oryza/chemistry , Spectroscopy, Fourier Transform Infrared/statistics & numerical data , Spectroscopy, Near-Infrared/statistics & numerical data , Electronic Nose/statistics & numerical data , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Near-Infrared/methods
16.
Talanta ; 199: 270-276, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30952257

ABSTRACT

In the present study, an advanced and original multivariate strategy for the processing of hyperspectral images in the near-infrared region is proposed to automatically detect physico-chemical defects in green coffee, which are similar one to each other by naked eye. An object-based approach for the characterization of individual beans, rather than single pixels, was adopted, calculating a series of descriptive parameters characterizing the distribution of scores on the lowest-order principal components. On such parameters, the k-nearest neighbors (k-NN) classification algorithm was applied and the predictive results on the test samples indicate that this approach is able not only to distinguish defective beans from non-defective ones, but also to differentiate the various types of defects. Hyperspectral imaging is demonstrated to be a valid alternative for the sorting of green beans - a crucial phase for coffee import/export.


Subject(s)
Automation , Coffee/chemistry , Infrared Rays , Spectroscopy, Near-Infrared
17.
Anal Chim Acta ; 1058: 9-17, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-30851858

ABSTRACT

The present tutorial paper is aimed to analyse and critically discuss the consequences of row pre-processing (conversion of measurement units, derivatives, and standard normal variate transform) on the evaluation of final outcomes of chemometric data analysis. An in-depth focus on pre-processing effects both on the signal shape and on misinterpretation of results - a crucial and disregarded issue in the analytical field - is presented. It is shown how this preliminary step of data processing may lead, in many cases, to draw incongruous conclusions, not actually based on real information embodied within data, but on artefacts arising from the mathematical transforms. This tutorial is not limited to a description of the problem, it also introduces strategies and tools for overcoming such unwanted effects, allowing a direct interpretation of the importance of original variables to be performed, explaining the chemical information that actually characterises samples. The dangerous implications of row pre-processing on instrumental signals is demonstrated on real datasets coming from different analytical techniques: transmission and attenuated total reflection infrared spectroscopy, cyclic voltammetry, X-ray fluorescence spectroscopy, Raman spectroscopy, and ultraviolet-visible spectroscopy. Hence, the impact of this widespread problem in most of the branches of analytical chemistry is illustrated.

18.
Anal Chim Acta ; 1056: 7-15, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30797462

ABSTRACT

In this paper, an approach for the detection of extra-virgin olive oil (EVOO) free-acidity, based on combination of voltammetric profiles (Voltammetry) and Partial Least Squares (PLS) multivariate regression, is described. Voltammetric measurements are performed with a 12.5 µm radius platinum microdisk, directly in the oil samples mixed with 0.5 M of the room temperature ionic liquid (RTIL) tri-hexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, which acted as a supporting electrolyte, and allows achieving a suitable conductivity in the matrices. Multivariate regression is performed directly on full voltammetric responses recorded over a properly chosen negative potential range and scan rate, where essentially all free fatty acids, characterizing EVOOs, can be reproducibly reduced. PLS regression models are built by employing Italian EVOO samples training sets at different acidity levels (over the range 0.2% w/w - 1.5% w/w; (% w/w) represents mass percentage) and optimized by choosing the optimal complexity, in terms of number of latent variables (LVs). The free-acidity prediction is made through a multivariate model, constructed by using standards of known acidity (determined by the official volumetric titration method) and validated on an external sample set. To show the validity of the proposed method, the PLS/Voltammetry predictions of the free-acidity of a series of commercially available Italian EVOOs, ranging from 0.2 to 0.41 %w/w, are obtained and the values compared with those determined by the official titration approach. Differences found between the two methods are within 5% RSD.


Subject(s)
Olive Oil/chemistry , Electrochemistry , Food Quality , Hydrogen-Ion Concentration , Ionic Liquids/chemistry , Least-Squares Analysis , Multivariate Analysis , Regression Analysis , Temperature , Time Factors
19.
J Pharm Biomed Anal ; 159: 311-317, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30015101

ABSTRACT

In this study, an alternative analytical approach for analyzing and characterizing green tea (GT) samples is proposed, based on the combination of excitation-emission matrix (EEM) fluorescence spectroscopy and multivariate chemometric techniques. The three-dimensional spectra of 63 GT samples were recorded using a Perkin-Elmer LS55 luminescence spectrometer; emission spectra were recorded between 295 and 800 nm at excitation wavelength ranging from 200 to 290 nm, with excitation and emission slits both set at 10 nm. The excitation and emission profiles of two factors were obtained using Parallel Factor Analysis (PARAFAC) as a 3-way decomposition method. In this way, for the first time, the spectra of two main fluorophores in green teas have been found. Moreover, a cyclodextrin-modified micellar electrokinetic chromatography method was employed to quantify the most represented catechins and methylxanthines in a subset of 24 GT samples in order to obtain complementary information on the geographical origin of tea. The discrimination ability between the two types of tea has been shown by a Partial Least Squares Class-Modelling performed on the electrokinetic chromatography data, being the sensitivity and specificity of the class model built for the Japanese GT samples 98.70% and 98.68%, respectively. This comprehensive work demonstrates the capability of the combination of EEM fluorescence spectroscopy and PARAFAC model for characterizing, differentiating and analyzing GT samples.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Cyclodextrins/chemistry , Tea/chemistry , Cyclodextrins/metabolism , Factor Analysis, Statistical , Least-Squares Analysis , Spectrometry, Fluorescence/methods , Tea/metabolism
20.
J Sci Food Agric ; 98(12): 4561-4569, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29505171

ABSTRACT

BACKGROUND: For the processing industry, it is crucial to know what effect the roasting process and conditions have on hazelnut quality. The present study investigates, for the first time, the effects of hot-air and infrared (IR) roasting at different time-temperature combinations on Tonda Gentile Trilobata hazelnut: whole kernels and derived processing products (paste and oil). RESULTS: The nutritional and physical characteristics of hazelnuts and processing products were investigated to determine the influence of the different roasting conditions as a function of intended use. The antioxidant profile (2.2-diphenyl-1-picrylhydrazyl radical, oxygen radical absorbance capacity and total phenolic content) were analyzed on roasted hazelnut and paste extracts. For a comprehensive understanding of the complex biochemical phenomena occurring during roasting, E-nose and near-IR spectroscopy were also applied. All analytical data were processed using univariate and multivariate data analyses. Hazelnuts derived from IR roasting at higher temperatures (195 °C) showed a richer antioxidant profile and a more intense flavour. On the other hand, the yield associated with the oil extraction under the same conditions was unsatisfactory, making this process completely inadequate for oil production. Oil obtained by hot-air roasting and IR roasting at lower temperature (135 °C) was found to be of good quality, showing rather similar acidity grade, peroxide number and acidic composition. In particular, a slightly but significantly lower acidity was related to lower roasting temperatures (0.21-0.22% versus 0.27% for higher temperatures). All roasting conditions tested allowed the quantitative homogeneous hazelnut paste to be obtained and, from a rheological point of view, a higher roasting temperatures resulted in pastes characterized by higher density and viscosity values. CONCLUSION: The use of IR was found to be a promising alternative method for hazelnut roasting, as a result of its capability with respect to preserving nutritional values and enhancing organoleptic quality. © 2018 Society of Chemical Industry.


Subject(s)
Cooking/methods , Corylus/chemistry , Nuts/radiation effects , Antioxidants/chemistry , Cooking/instrumentation , Corylus/radiation effects , Hot Temperature , Infrared Rays , Nutritive Value , Nuts/chemistry , Phenols/chemistry , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...