ABSTRACT
PURPOSE: To evaluate effectiveness of canine renal capsule for augmentation cystoplasty. MATERIALS AND METHODS: Ten adult dogs participated in this study. After induction of anesthesia each animal underwent bed side urodynamic study, bladder capacity and bladder pressure was recorded. Then via mid line incision abdominal cavity was entered, right kidney was identified and its capsule was dissected. Bladder augmentation was done by anastomosing the renal capsule to the bladder. After 6 months bed side urodynamic study was performed again and changes in bladder volume and pressure were recorded. Then the animals were sacrificed and the augmented bladders were sent for histopathology evaluation. RESULTS: Mean maximum anatomic bladder capacity before cystoplasty was 334.00±11.40cc which increased to 488.00±14.83cc post-operatively (p=0.039). Mean anatomic bladder pressure before cystoplasty was 19.00±1.58cmH2O which decreased to 12.60±1.14cmH2O post-operatively (p=0.039). Histopathology evaluation revealed epithelialization of the renal capsule with urothelium without evidence of fibrosis, collagen deposits or contracture. CONCLUSIONS: Our data shows that renal capsule is a favorable biomaterial for bladder augmentation in a canine model.
Subject(s)
Biocompatible Materials/therapeutic use , Kidney/surgery , Urinary Bladder/surgery , Urologic Surgical Procedures/methods , Animals , Dogs , Fibrosis , Kidney/pathology , Models, Animal , Reproducibility of Results , Time Factors , Tissue Scaffolds , Treatment Outcome , Urinary Bladder/pathology , UrodynamicsABSTRACT
ABSTRACT Purpose: To evaluate effectiveness of canine renal capsule for augmentation cystoplasty. Materials and Methods: Ten adult dogs participated in this study. After induction of anesthesia each animal underwent bed side urodynamic study, bladder capacity and bladder pressure was recorded. Then via mid line incision abdominal cavity was entered, right kidney was identified and its capsule was dissected. Bladder augmentation was done by anastomosing the renal capsule to the bladder. After 6 months bed side urodynamic study was performed again and changes in bladder volume and pressure were recorded. Then the animals were sacrificed and the augmented bladders were sent for histopathology evaluation. Results: Mean maximum anatomic bladder capacity before cystoplasty was 334.00±11.40cc which increased to 488.00±14.83cc post-operatively (p=0.039). Mean anatomic bladder pressure before cystoplasty was 19.00±1.58cmH2O which decreased to 12.60±1.14cmH2O post-operatively (p=0.039). Histopathology evaluation revealed epithelialization of the renal capsule with urothelium without evidence of fibrosis, collagen deposits or contracture. Conclusions: Our data shows that renal capsule is a favorable biomaterial for bladder augmentation in a canine model.