Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 7(2)2017 May 17.
Article in English | MEDLINE | ID: mdl-28513556

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is an interesting biopolymer for replacing petroleum-based plastics, its biological production is performed in natural and engineered microorganisms. Current metabolic engineering approaches rely on high-throughput strain construction and screening. Analytical procedures have to be compatible with the small scale and speed of these approaches. Here, we present a method based on isotope dilution mass spectrometry (IDMS) and propanolysis extraction of poly(3-hydroxybutyrate) from an Escherichia coli strain engineered for PHB production. As internal standard (IS), we applied an uniformly labeled 13C-cell suspension, of an E. coli PHB producing strain, grown on U-13C-glucose as C-source. This internal 13C-PHB standard enables to quantify low concentrations of PHB (LOD of 0.01 µg/gCDW) from several micrograms of biomass. With this method, a technical reproducibility of about 1.8% relative standard deviation is achieved. Furthermore, the internal standard is robust towards different sample backgrounds and dilutions. The early addition of the internal standard also enables higher reproducibility and increases sensitivity and throughput by simplified sample preparation steps.

2.
Metabolites ; 6(2)2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27120628

ABSTRACT

Ammonium (NH4⁺) is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH4⁺ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation-an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS), was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG) need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids).

3.
Metab Eng ; 32: 155-173, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26476338

ABSTRACT

In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).


Subject(s)
Penicillins/biosynthesis , Phenylacetates/metabolism , Acyltransferases/biosynthesis , Acyltransferases/genetics , Algorithms , Carbon/metabolism , Culture Media , Filtration , Glucose/metabolism , Kinetics , Metabolic Networks and Pathways , Models, Biological , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/metabolism , Penicillin-Binding Proteins/biosynthesis , Penicillin-Binding Proteins/genetics , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...