Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897556

ABSTRACT

Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open pore channels in the range of 50−200 µm. Shear rate sweep measurements demonstrate a reversible phase transition from sol to gel with increasing temperature and a gelation time of 5 min. The hydrogels show a shear-thinning behavior with a shear modulus ranging from 1 to 12 kPa dependent on gold concentration. Electrical conductivity studies reveal that the conductance of the polymer matrix is 6 × 10−2 S/m at 75 mM Au. In vitro cytocompatibility assays by H9C2 cells show high biocompatibility (cell viability of >90% after 72 h incubation) with good cell adhesion. In conclusion, the developed nanocomposite hydrogel has great potential for use as an injectable biomaterial for cardiac tissue regeneration.

2.
Micromachines (Basel) ; 11(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331275

ABSTRACT

High throughput particle/cell concentration is crucial for a wide variety of biomedical, clinical, and environmental applications. In this work, we have proposed a passive spiral microfluidic concentrator with a complex cross-sectional shape, i.e., a combination of rectangle and trapezoid, for high separation efficiency and a confinement ratio less than 0.07. Particle focusing in our microfluidic system was observed in a single, tight focusing line, in which higher particle concentration is possible, as compared with simple rectangular or trapezoidal cross-sections with similar flow area. The sharper focusing stems from the confinement of Dean vortices in the trapezoidal region of the complex cross-section. To quantify this effect, we introduce a new parameter, complex focusing number or CFN, which is indicative of the enhancement of inertial focusing of particles in these channels. Three spiral microchannels with various widths of 400 µm, 500 µm, and 600 µm, with the corresponding CFNs of 4.3, 4.5, and 6, respectively, were used. The device with the total width of 600 µm was shown to have a separation efficiency of ~98%, and by recirculating, the output concentration of the sample was 500 times higher than the initial input. Finally, the investigation of results showed that the magnitude of CFN relies entirely on the microchannel geometry, and it is independent of the overall width of the channel cross-section. We envision that this concept of particle focusing through complex cross-sections will prove useful in paving the way towards more efficient inertial microfluidic devices.

3.
Electrophoresis ; 41(5-6): 353-359, 2020 03.
Article in English | MEDLINE | ID: mdl-32012295

ABSTRACT

The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 µm from 10 µm particles potentially applicable to separate microalgae (Tetraselmis suecica from Phaeodactylum tricornutum). Two spiral microchannels with the same cross section dimension but different outlet geometry were considered and tested to investigate the particle focusing behavior and separation efficiency. As compared with particle focusing observed in channels with a simple outlet, the particle focusing in a modified outlet geometry appears in a more successful focusing manner with complete separation. This simple approach of particle separation makes it attractive for lab-on-a-chip devices for continuous extraction and filtration of a wide range of cell/particle sizes.


Subject(s)
Cell Separation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Cell Separation/methods , Equipment Design , Lab-On-A-Chip Devices , Microalgae/cytology , Microalgae/isolation & purification , Microfluidic Analytical Techniques/methods , Microspheres , Particle Size
4.
PLoS One ; 14(12): e0225447, 2019.
Article in English | MEDLINE | ID: mdl-31794564

ABSTRACT

Understanding the effects of individual awareness on epidemic phenomena is important to comprehend the coevolving system dynamic, to improve forecasting, and to better evaluate the outcome of possible interventions. In previous models of epidemics on social networks, individual awareness has often been approximated as a generic personal trait that depends on social reinforcement, and used to introduce variability in state transition probabilities. A novelty of this work is to assume that individual awareness is a function of several contributing factors pooled together, different by nature and dynamics, and to study it for different epidemic categories. This way, our model still has awareness as the core attribute that may change state transition probabilities. Another contribution is to study positive and negative variations of awareness, in a contagion-behavior model. Imitation is the key mechanism that we model for manipulating awareness, under different network settings and assumptions, in particular regarding the degree of intentionality that individuals may exhibit in spreading an epidemic. Three epidemic categories are considered-disease, addiction, and rumor-to discuss different imitation mechanisms and degree of intentionality. We assume a population with a heterogeneous distribution of awareness and different response mechanisms to information gathered from the network. With simulations, we show the interplay between population and awareness factors producing a distribution of state transition probabilities and analyze how different network and epidemic configurations modify transmission patterns.


Subject(s)
Awareness , Epidemics , Health Behavior , Models, Theoretical , Computer Simulation , Humans , Radiotherapy, Intensity-Modulated
5.
Electrophoresis ; 28(3): 301-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17191278

ABSTRACT

The dependence of the mobility of DNA molecules through an hexagonal array of micropillars on their length and the applied electric field was investigated and it was found that mobility is a nonmonotonic function of their length. Results also revealed that the size dependence of the DNA mobility depends on the applied electric field and there is a crossover around E approximately 25 V/cm for the mobility of lambda-DNA and T4-DNA. These observations are explained in terms of the diffusion process inside the structure affected by the solvent and are modeled using the Langevin and its corresponding Fokker-Planck equations. The phenomenon is generalized under three regimes in a phase diagram relating the electric field and the DNA lengths. The model and the associated phase diagram described here provide an explanation for the conflicting results reported by previous authors (Han et al. on the one hand, and Duong et al. and Inatomi et al. on the other) about the dependence of mobility on the DNA size in lattices near or below the radius of gyration.


Subject(s)
Computer Simulation , DNA, Viral/chemistry , Electromagnetic Fields , Models, Theoretical , Nucleic Acid Conformation , Bacteriophage T4/chemistry , Bacteriophage lambda/chemistry , Diffusion , Electrophoresis, Agar Gel
SELECTION OF CITATIONS
SEARCH DETAIL
...