Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol ; 24(3): 100925, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018753

ABSTRACT

Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).

2.
Life Sci ; 344: 122529, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38490297

ABSTRACT

The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Probiotics , Humans , Gastrointestinal Microbiome/physiology , Colorectal Neoplasms/prevention & control , Probiotics/therapeutic use , Inflammation , Immune System
3.
Bioimpacts ; 10(2): 65-72, 2020.
Article in English | MEDLINE | ID: mdl-32363150

ABSTRACT

Introduction: Gastric cancer is considered the second prevalent cause of death around the world. This type of cancer is generally induced by Helicobacter pylori which could colonize within the gastric mucosa of the infected cases. To date, triple antibiotic therapy has routinely been utilized for controlling the H. pylori- induced infection. However, this strategy has been unsuccessful, in large part because of issues such as occurring point mutations in the H. pylori genome that can induce resistance to the antibiotics administered. Recently, it has been shown that different probiotics may have strong anti-cancer effects, in which they are capable of inhibiting H. pylori by both immunological and non-immunological mechanisms. Here, we aimed at finding possible anti-cancer impacts of the probiotic bacterium Lactobacillus plantarum on gastric cancer, AGS cells. Methods: The anti-cancer effects of the conditioned media of the locally isolated L. plantarum on the AGS cells were evaluated by different analyses such as flow cytometry, DNA ladder assay, DAPI staining, and RT-PCR. Results: Our findings showed that the conditioned media of L. plantarum can inhibit both H. pylori and AGS cells through up-/down-regulation of PTEN, Bax, TLR4, and AKT genes. The exudates of the probiotic L. plantarum bacteria can increase the expression of PTEN, Bax, and TLR4, and also decrease the expression of AKT gene. Conclusion: In agreement with different reports, our results proved the anti-cancer effects of the locally isolated L. plantarum through some immunological cell signaling pathways. Accordingly, it seems the probiotics could be considered as at least a complementary treatment for different types of malignancies.

4.
Biotechnol Adv ; 40: 107499, 2020.
Article in English | MEDLINE | ID: mdl-31862234

ABSTRACT

Most of the recent approved therapeutic proteins are multi-subunit biologics, which need glycosylation and disulfide bridges for their correct conformation and biological functions. Currently, there exist many protein-based drugs that are mostly produced in the Chinese hamster ovary (CHO) cells. However, this expression system appears to associate with some limitations both in upstream and downstream processing steps, including low growth rate, sensitivity to different stresses and pathogens, and time-consuming purification processes. Some microalgae species offer a suitable expression system for the production of a wide range of recombinant proteins due to their key features such as fast-growing rate, having no common pathogens with the human, being used as the human food, and providing the possibility for the large-scale production in the closed/controlled bioreactors. More importantly, the protein biosynthesis machinery of some microalgae seems to be relatively similar to those of the human and animal cells. In fact, microalgae can assemble fully functional complex proteins that can be safely used in humans. In this review, we provide comprehensive insights into the currently used expression systems for the production of therapeutic proteins and discuss the essential features of the microalgae as a novel protein expression platform.


Subject(s)
Microalgae , Animals , Bioreactors , Humans , Recombinant Proteins
5.
Food Chem ; 272: 709-714, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30309602

ABSTRACT

Lactobacillus species are beneficial for the functional food industry and preventive medicine. The complex microflora of traditional cheese depends on the cheese types (e.g., homemade rennets). Here, the abomasum driven rennet was assessed for the existence of lactobacilli. For differentiating lactobacilli, the bacterial suspension was screened for the acid and bile resistance. The isolated bacteria were evaluated for antibiotic susceptibility and antagonistic impacts on other pathogenic bacteria. The 16S rDNA gene was evaluated by the amplified ribosomal DNA restriction analysis (ARDRA) recruiting the restriction enzyme Taq I and compared to the virtually digested patterns of previous reports on lactobacilli. The isolates were examined by random amplified polymorphic DNA (RAPD) and distinctive lactobacilli were sequenced. ARDRA and RAPD data showed three distinct lactobacilli strains, including L. acidophilus, L. planetarum, and L. fermentum. The homemade rennet is proposed as the novel source of probiotic strains as an alternative to the traditional cheeses.


Subject(s)
Abomasum/microbiology , Cheese/microbiology , Lactobacillus/isolation & purification , Probiotics , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Lactobacillus/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA
6.
Gastric Cancer ; 22(1): 23-36, 2019 01.
Article in English | MEDLINE | ID: mdl-30145749

ABSTRACT

Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous "hits" on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.


Subject(s)
Bacterial Vaccines/therapeutic use , Helicobacter Infections/complications , Helicobacter Infections/therapy , Neoplasms/microbiology , Neoplasms/prevention & control , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Humans , Vaccination , Virulence
7.
Appl Microbiol Biotechnol ; 102(21): 9267-9278, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30159589

ABSTRACT

The planktonic blue-green microalga Spirulina (Arthrospira) platensis possesses important features (e.g., high protein and vital lipids contents as well as essential vitamins) and can be consumed by humans and animals. Accordingly, this microalga gained growing attention as a new platform for producing edible-based pharmaceutical proteins. However, there are limited successful strategies for the transformation of S. platensis, in part because of an efficient expression of strong endonucleases in its cytoplasm. In the current work, as a pilot step for the expression of therapeutic proteins, an Agrobacterium-based system was established to transfer gfp:gus and hygromycin resistance (hygr) genes into the genome of S. platensis. The presence of acetosyringone in the transfection medium significantly reduced the transformation efficiency. The PCR and real-time RT-PCR data confirmed the successful integration and transcription of the genes. Flow cytometry and ß-glucuronidase (GUS) activity experiments confirmed the successful production of GFP and the enzyme. Moreover, the western blot analysis showed a ~ 90 kDa band in the transformed cells, indicating the successful production of the GFP:GUS protein. Three months after the transformation, the gene expression stability was validated by histochemical, flow cytometry, and hygromycin B resistance analyses.


Subject(s)
Microalgae/genetics , Spirulina/genetics , Transformation, Genetic/genetics , Vaccines, Edible/genetics , Agrobacterium/genetics , Cytoplasm/genetics , Endonucleases/genetics , Gene Expression/genetics , Gene Transfer Techniques , Glucuronidase/genetics , Hygromycin B/metabolism , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...