Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 200: 110982, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37597269

ABSTRACT

Polymer-carbon nanostructures have been used as gamma-ray dosimeters. The thickness of the sensitive volume material plays an important role in the determination of the dosimetry response. In this work, the thickness effect of a real-time dosimeter based on the Epoxy/Multi-walled carbon nanotube (MWCNT) nanocomposite was investigated. The amount of electrical percolation threshold (EPT) for Epoxy/MWCNT nanocomposite was initially simulated using the finite element method. Then, the 0.1 MWCNT wt% nanocomposite was fabricated using a solution method with three thicknesses of 1, 2, and 3 mm. FESEM images demonstrated a good dispersion state of the inclusions into the Epoxy matrix. The samples were irradiated by gamma-rays of Co-60 source over the dose rates of 25-166 mGy/min. In addition, dosimetric characteristics were performed, including linearity, bias-polarity, angular dependence, energy dependence, field size, and repeatability. Results revealed that with increasing the thickness, the dosimetry response was enhanced remarkably.

2.
Sci Rep ; 12(1): 18798, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335163

ABSTRACT

This research aims to investigate a ternary nanocomposite based on High Density Polyethylene/ Bismuth Oxide/Graphene Oxide (HDPE/Bi2O3/GO) at various concentrations. Solution method was used to fabricate the samples. FESEM-EDX mapping, AFM, TEM, XRD, XPS, FTIR, and TGA/DTG analyses were carried out on the samples. XRD analysis demonstrated a semi-crystalline behavior for the samples. TEM analysis exhibited a cauliflower-like structure of the material. The sample was irradiated by gamma-rays of 60Co source over the dose rate of 30-254 mGy/min and the electric current was measured as the response of the real-time dosimeter. Thus, various dosimetric characteristics were performed, namely linearity, angular dependence, energy dependence, bias-polarity, field size, and repeatability of the data. Results showed that response of the dosimeter was linear in the range of the investigated dose rate. The sensitivity of the 60 wt% Bi2O3 sample was measured as 3.4 nC·mGy-1. The angular response variation was 20% for normal beam incidence. The response of the dosimeter to assess the energy dependency was obtained as 2.2% at the radiation field of the 137Cs and 60Co beams. The dosimeter response was dependent on the bias-polarity, with maximum discrepancy of 11.1%. The dosimetry response was highly dependent upon the radiation field size. The repeatability of the dosimeter response was measured with standard deviation less than 1%. As well, the dosimeter response during the one-hour irradiation was stable with a standard deviation of 0.66%. Results showed that considering some correction factors, this material can be used for dosimetry of gamma-rays at the therapy level.


Subject(s)
Nanocomposites , Polyethylene , Radiometry/methods
3.
Sci Rep ; 12(1): 9259, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35665776

ABSTRACT

This study aimed to introduce new composites, containing polyamide-6 (PA6) and lead monoxide (PbO), to protect against ionizing photon sources used for diagnostic and therapeutic purposes. Five composites, containing various weight percentages of PbO filler (0, 5, 10, 20, and 50%), were developed in this study. Initially, the numerical attenuation value was estimated using the XMuDat program by calculating the mass attenuation coefficients at different energy levels. Next, the samples were synthesized based on the melt-mixing method in a laboratory mixing extruder. Their characteristics were also determined by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Finally, experimental radiation attenuation tests were carried out. Based on the SEM results, the acceptable filler weight percentage was up to 20%. However, substantial aggregates were formed at the highest weight percentage. The results of XRD analysis showed a higher tendency for crystallization by decreasing the amorphous area while increasing the filler weight percentage. Moreover, the mass loss rate was monitored at different temperatures, revealing that the filler incorporation improved the thermal durability of the samples. The radiation results showed a good agreement between the experimental and computational data, except when aggregates formation was substantial. The experimental data revealed that when the lead weight percentage increased from 0% (crude PA6) to 50%, the half-value layer decreased from 3.13 to 0.17 cm at an energy level of 59 keV and from 7.28 to 4.97 cm at an energy level of 662 keV. Following the studied mechanism, the superiority of lead/polyamide composites can be found in the high adsorption of photon radiation at low energies (E < 0.20 MeV) and significant attenuation at medium and higher energies. Considering these promising results, the shielding properties of these composites can be further analyzed via more practical investigations.


Subject(s)
Nylons , Oxides , Lead , Photons
4.
Sci Rep ; 12(1): 2496, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35169247

ABSTRACT

In this research, for the first time, the polycarbonate/bismuth oxide (PC-Bi2O3) composite was studied as a beta-ray sensor using a pure beta-emitter 90Sr source. Firstly, the range and stopping power of the electrons in the composite at various loadings of 0, 10, 20, 30, 40, and 50 wt% were calculated using the ESTAR program. Results of simulation demonstrated that the concentration of the heavy metal oxide particles into the polymer matrix played an important role in evaluating the range and stopping power of the electrons in the composite. Secondly, at the experimental phase, the pure Polycarbonate and 50 wt% PC-Bi2O3 nanocomposite with dimensions of 4 × 4 × 0.1 cm3 were prepared and irradiated by 90Sr. Also, current-voltage (I-V) plot exhibited linear response ranging from 100 to 1000 V at the fixed source-to-surface distance (SSD). Then the amount of electric current as the sensor response was measured in various dose rates at the fixed voltage of 400 V for the pure Polycarbonate and 50 wt% PC-Bi2O3 nanocomposite using an electrometer, in which results showed that the sensitivities were found as 20.3, and 33.3 nC mSv-1 cm-3, respectively. This study showed that this composite could serve as a novel beta-ray sensor.

5.
Sci Rep ; 11(1): 20657, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34667242

ABSTRACT

In this paper, various multi-layer shields are designed, optimized, and analyzed for electron and proton space environments. The design process is performed for various suitable materials for the local protection of sensitive electronic devices using MCNPX code and the Genetic optimization Algorithm. In the optimizations process, the total ionizing dose is 53.3% and 72% greater than the aluminum shield for proton and electron environments, respectively. Considering the importance of the protons in the LEO orbits, the construction of the shield was based on designing a proton source. A sample shield is built using a combination of Aluminum Bronze and molybdenum layers with a copper carrier to demonstrate the idea. Comparisons of radiation attenuation coefficient results indicate a good agreement between the experimental, simulation, and analytical calculations results. The good specifications of the proposed multi-layer shield prove their capability and ability to use in satellite missions for electronic device protection.

6.
Sci Rep ; 11(1): 10614, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011933

ABSTRACT

The fabrication of different weight percentages of Polycarbonate-Bismuth Oxide composite (PC-Bi2O3), namely 0, 5, 10, 20, 30, 40, and 50 wt%, was done via the mixed-solution method. The dispersion state of the inclusions into the polymeric matrix was studied through XRD and SEM analyses. Also, TGA and DTA analyses were carried out to investigate the thermal properties of the samples. Results showed that increasing the amount of Bi2O3 into the polymer matrix shifted the glass transition temperature of the composites towards the lower temperatures. Then, the amount of mass attenuation coefficients of the samples were measured using a CsI(Tl) detector for different gamma rays of 241Am, 57Co, 99mTc, and 133Ba radioactive sources. It was obtained that increasing the concentration of the Bi2O3 fillers in the polycarbonate matrix resulted in increasing the attenuation coefficients of the composites significantly. The attenuation coefficient was enhanced twenty-three times for 50 wt% composite in 59 keV energy, comparing to the pure polycarbonate.

SELECTION OF CITATIONS
SEARCH DETAIL
...