Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Anat ; 245(1): 58-69, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38481117

ABSTRACT

Bone microdamage is common at subchondral bone (SCB) sites subjected to repeated high rate and magnitude of loading in the limbs of athletic animals and humans. Microdamage can affect the biomechanical behaviour of bone under physiological loading conditions. To understand the effects of microdamage on the mechanical properties of SCB, it is important to be able to quantify it. The extent of SCB microdamage had been previously estimated qualitatively using plain microcomputed tomography (µCT) and a radiocontrast quantification method has been used for trabecular bone but this method may not be directly applicable to SCB due to differences in bone structure. In the current study, SCB microdamage detection using lead uranyl acetate (LUA) and quantification by contrast-enhanced µCT and backscattered scanning electron microscopy (SEM) imaging techniques were assessed to determine the specificity of the labels to microdamage and the accuracy of damaged bone volume metrices. SCB specimens from the metacarpus of racehorses, with the hyaline articular cartilage (HAC) removed, were grouped into two with one group subjected to ex vivo uniaxial compression loading to create experimental bone damage. The other group was not loaded to preserve the pre-existing in vivo propagated bone microdamage. A subset of each group was stained with LUA using an established or a modified protocol to determine label penetration into SCB. The µCT and SEM images of stained specimens showed that penetration of LUA into the SCB was better using the modified protocol, and this protocol was repeated in SCB specimens with intact hyaline articular cartilage. The percentage of total label localised to bone microdamage was determined on SEM images, and the estimated labelled bone volume determined by µCT in SCB groups was compared. Label was present around diffuse and linear microdamage as well as oblique linear microcracks present at the articular surface, except in microcracks with high-density mineral infills. Bone surfaces lining pores with recent mineralisation were also labelled. Labelled bone volume fraction (LV/BV) estimated by µCT was higher in the absence of HAC. At least 50% of total labels were localised to bone microdamage when the bone area fraction (B.Ar/T.Ar) of the SCB was greater than 0.85 but less than 30% when B.Ar/T.Ar of the SCB was less than 0.85. To adjust for LUA labels on bone surfaces, a measure of the LV/BV corrected for bone surface area (LV/BV BS-1) was used to quantify damaged SCB. In conclusion, removal of HAC and using a modified labelling protocol effectively stained damaged SCB of the metacarpus of racehorses and represents a technique useful for quantifying microdamage in SCB. This method can facilitate future investigations of the effects of microdamage on joint physiology.


Subject(s)
X-Ray Microtomography , Animals , X-Ray Microtomography/methods , Horses , Microscopy, Electron, Scanning , Contrast Media , Bone and Bones/diagnostic imaging , Bone and Bones/pathology
2.
J Mech Behav Biomed Mater ; 152: 106405, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271752

ABSTRACT

Most fractures in the third metacarpal bone of equine athletes occur due to repeated cycles of high load magnitudes and are commonly generated during fast-training workouts. These repetitive loads may induce changes in the microstructure and mechanical properties that can develop into subchondral bone (SCB) injuries near the articular surface. In this study, we investigated the fatigue behaviour of local regions in SCB (near the articular surface i.e., 2 mm superficial SCB and the underlying 2 mm deeper SCB) under a simulated fast-training workout of an equine athlete. A fatigue test on SCB specimens was designed to simulate the fast-training workout, which comprised of repeated load cycles with varying load magnitude, representing the varying gait speed during a fast-training workout. The fatigue test was applied three times to each of the five cylindrical SCB specimens harvested from the left and right metacarpal condyles of five thoroughbred racehorses). All specimens completed at least one fatigue test. Three specimens completed all three fatigue tests with no visible cracks identified with Micro-CT scans. The other two specimens failed in the second fatigue test, and cracks were identified with Micro-CT scans in the various local regions. Using Digital Image Correlation (DIC) analysis, we found that in the local regions of all specimens, modulus decreased between load cycles corresponding to 68 and 93 MPa load magnitudes (equivalent to the fastest gallop speed). Wherein specimens that failed exhibited a greater decrease in modulus (in superficial SCB by 45.64 ± 5.66% and in deeper SCB by -36.85 ± 10.47% (n = 2)) than those not failed (in superficial SCB by -7.45 ± 14.62% and in deeper SCB by -5.67 ± 7.32% (n = 3)). This has provided evidence that the loads on SCB at galloping speeds are most likely to produce fatigue damage and that the damage induced is localised. Furthermore, one of the failed specimens exhibited a peak in the tensile strain rather than compressive strain in the superficial region with a rapid decrease in modulus. In addition, the superficial region of all specimens exhibited greater residual tensile strain than that of the deeper region.


Subject(s)
Fractures, Bone , Gastropoda , Metacarpal Bones , Simulation Training , Humans , Animals , Horses , X-Ray Microtomography
3.
Comput Methods Biomech Biomed Engin ; 26(9): 1055-1063, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35930042

ABSTRACT

OpenSim is an open-source biomechanical package with a variety of applications. It is available for many users with bindings in MATLAB, Python, and Java via its application programming interfaces (APIs). Although the developers described well the OpenSim installation on different operating systems (Windows, Mac, and Linux), it is time-consuming and complex since each operating system requires a different configuration. This project aims to demystify the development of neuro-musculoskeletal modeling in OpenSim with zero configuration on any operating system for installation (thus cross-platform), easy to share models while accessing free graphical processing units (GPUs) on a web-based platform of Google Colab. To achieve this, OpenColab was developed where OpenSim source code was used to build a Conda package that can be installed on the Google Colab with only one block of code in less than 7 min. To use OpenColab, one requires a connection to the internet and a Gmail account. Moreover, OpenColab accesses vast libraries of machine learning methods available within free Google products, e.g. TensorFlow. Next, we performed an inverse problem in biomechanics and compared OpenColab results with OpenSim graphical user interface (GUI) for validation. The outcomes of OpenColab and GUI matched well (r≥0.82). OpenColab takes advantage of the zero-configuration of cloud-based platforms, accesses GPUs, and enables users to share and reproduce modeling approaches for further validation, innovative online training, and research applications. Step-by-step installation processes and examples are available at: https://simtk.org/projects/opencolab.


Subject(s)
Search Engine , User-Computer Interface , Biomechanical Phenomena , Software , Internet
4.
J Mech Behav Biomed Mater ; 136: 105491, 2022 12.
Article in English | MEDLINE | ID: mdl-36198232

ABSTRACT

Biomechanical strain is a major stimulus of subchondral bone (SCB) tissue adaptation in joints but may also lead to initiation and propagation of microcracks, highlighting the importance of quantifying the intratissue strain in subchondral bone. In the present study, we used micro computed tomography (µCT) imaging, mechanical testing, and digital image correlation (DIC) techniques to evaluate the biomechanical strains in equine SCB under impact compression applied through the articular surface. We aimed to investigate the effects of in vivo accumulated microdamage in equine SCB on the distribution of mechanical impact strain through the articular cartilage. Under the applied strain of 2.0 ± 0.1% (mean ± standard deviation, n=15) to the articular surface of cartilage-bone plugs, the overall thickness of the SCB developed eSCBOverall = 0.7 ± 0.2% in all specimens. Contours of high strains in specimens without microdamage (NDmg) aligned parallel to the cartilage-bone interface with peak tensile, ϵt, and compressive, ϵc, strains of 0.5 ± 0.3% and 1.2 ± 0.4%, respectively at the time of peak compression (n=7). In damaged specimens (Dmg), contours of high strains aligned with the cracks in the imaged plane with peak strains of ϵt= 1.2 ± 0.8% and ϵc= 3.5 ± 2.2%, respectively (n=7). Microdamage was the main predictor of the normalised compressive and tensile strains across the SCB thickness. Results of multivariable analyses revealed presence of microdamage, distance from the articular surface and TMD were the main predictors of normalised compressive and tensile strain. Strain was greater in the superficial bone, particularly for specimens with microdamage. In vivo fatigue-induced microdamage is an important predictor of local subchondral bone strains.


Subject(s)
Cartilage, Articular , Muscle Fatigue , Animals , Horses , X-Ray Microtomography , Bone and Bones/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Pressure
5.
Front Vet Sci ; 9: 923356, 2022.
Article in English | MEDLINE | ID: mdl-35847629

ABSTRACT

Fatigue-induced subchondral bone (SCB) injury is common in racehorses. Understanding how subchondral microstructure and microdamage influence mechanical properties is important for developing injury prevention strategies. Mechanical properties of the disto-palmar third metacarpal condyle (MCIII) correlate poorly with microstructure, and it is unknown whether the properties of other sites within the metacarpophalangeal (fetlock) joint are similarly complex. We aimed to investigate the mechanical and structural properties of equine SCB from specimens with minimal evidence of macroscopic disease. Three sites within the metacarpophalangeal joint were examined: the disto-palmar MCIII, disto-dorsal MCIII, and proximal sesamoid bone. Two regions of interest within the SCB were compared, a 2 mm superficial and an underlying 2 mm deep layer. Cartilage-bone specimens underwent micro-computed tomography, then cyclic compression for 100 cycles at 2 Hz. Disto-dorsal MCIII specimens were loaded to 30 MPa (n = 10), while disto-palmar MCIII (n = 10) and proximal sesamoid (n = 10) specimens were loaded to 40 MPa. Digital image correlation determined local strains. Specimens were stained with lead-uranyl acetate for volumetric microdamage quantification. The dorsal MCIII SCB had lower bone volume fraction (BVTV), bone mineral density (BMD), and stiffness compared to the palmar MCIII and sesamoid bone (p < 0.05). Superficial SCB had higher BVTV and lower BMD than deeper SCB (p < 0.05), except at the palmar MCIII site where there was no difference in BVTV between depths (p = 0.419). At all sites, the deep bone was stiffer (p < 0.001), although the superficial to deep gradient was smaller in the dorsal MCIII. Hysteresis (energy loss) was greater superficially in palmar MCIII and sesamoid (p < 0.001), but not dorsal MCIII specimens (p = 0.118). The stiffness increased with cyclic loading in total cartilage-bone specimens (p < 0.001), but not in superficial and deep layers of the bone, whereas hysteresis decreased with the cycle for all sites and layers (p < 0.001). Superficial equine SCB is uniformly less stiff than deeper bone despite non-uniform differences in bone density and damage levels. The more compliant superficial layer has an important role in energy dissipation, but whether this is a specific adaptation or a result of microdamage accumulation is not clear.

6.
J Mech Behav Biomed Mater ; 110: 103920, 2020 10.
Article in English | MEDLINE | ID: mdl-32957215

ABSTRACT

Fatigue-induced subchondral bone (SCB) injuries are prevalent among athletes due to the repetitive application of high magnitude loads on joints during intense physical training. Existing fatigue studies on bone utilize a standard fatigue test approach by applying loads of a constant magnitude and frequency even though physiological/realistic loading is a combination of various load magnitudes and frequencies. Metal materials in implant and aerospace applications have been studied for fatigue behavior under physiological or realistic loading, however, no such study has been conducted on biological materials like bones. In this study, we investigated fatigue behavior of SCB under the range of loads likely to occur during a fast-workout of an equine athlete in training. A loading protocol was developed by simulating physiological loads occurring during a fast-workout of a racehorse in training, which consisted of a sequence of compression-compression load cycles, including a warm-up (32, 54, 61 MPa) and cool-down (61, 54, 32 MPa) before and after the slow/fast/slow gallop phase of training, also referred to as a training loop. This loading protocol/training loop was applied at room temperature in load-control mode to cylindrical SCB specimens (n = 12) harvested from third metacarpal medial condyles (MCIII) of twelve thoroughbred racehorses and repeated until fatigue failure. The mean ± standard deviation for total time-to-failure (TTF) was 76,393 ± 64,243 s (equivalent to 18.3 ± 15.7 training workouts) for n = 12 specimens. We observed the highest relative energy loss (REL, hysteresis loss normalized to energy absorbed in a load cycle) under loads equivalent to gallop speeds and all specimens failed under these gallop loads. This demonstrates the importance of the gallop speeds in the development of SCB injury, consistent with observations made in live racehorses. Moreover, specimens with higher mean REL and lower mean stiffness during the first loop had a shorter fatigue life which further confirms the detrimental effect of high energy loss in SCB. Further studies are required to reconcile our results with fatigue injuries among equine athletes and understand the influence of different training programs on the fatigue behavior of subchondral bone.


Subject(s)
Metacarpal Bones , Physical Conditioning, Animal , Sports , Animals , Horses , Materials Testing , Pressure
7.
J Biomech ; 100: 109594, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31924348

ABSTRACT

Subchondral bone (SCB) microdamage is prevalent in the joints of human athletes and animals subjected to high rate and magnitude cyclic loading of the articular surface. Quantifying the effect of such focal in vivo fatigue-induced microdamage on the mechanical response of the tissue is critical for the understanding of joint surface injury and the development of osteoarthritis. Thus, we aimed to quantify the mechanical properties of cartilage-bone from equine third metacarpal (MC3) condyles, which is a common area of accumulated microdamage due to repetitive impact loading. We chose a non-destructive technique, i.e. high-resolution microcomputed tomography (µCT) imaging, to identify various degrees of in vivo microdamage in SCB prior to mechanical testing; because µCT imaging can only identify a proportion of accumulated microdamage, we aimed to identify racing and training history variables that provide additional information on the prior loading history of the samples. We then performed unconfined high-rate compression of approximately 2% strain at 45%/s strain rate to simulate a cycle of gallop and used real-time strain measurements using digital image correlation (DIC) techniques to find the stiffness and shock absorbing ability (relative energy loss) of the cartilage-bone unit, and those associated with cartilage and SCB. Results indicated that stiffness of cartilage-bone and those associated with the SCB decreased with increasing grade of damage. Whole specimen stiffness also increased, and relative energy loss decreased with higher TMD, whereas bone volume fraction of the SCB was only associated negatively with the stiffness of the bone. Overall, the degree of subchondral bone damage observed with µCT was the main predictor of stiffness and relative energy loss of the articular surface of the third metacarpal bone of Thoroughbred racehorses under impact loading.


Subject(s)
Cartilage, Articular/physiopathology , Compressive Strength , Fatigue/pathology , Fatigue/physiopathology , Metacarpal Bones/physiopathology , Animals , Biomechanical Phenomena , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Fatigue/diagnostic imaging , Horses , Humans , Metacarpal Bones/diagnostic imaging , Metacarpal Bones/pathology , Pressure , X-Ray Microtomography
8.
J Mech Behav Biomed Mater ; 90: 388-394, 2019 02.
Article in English | MEDLINE | ID: mdl-30445365

ABSTRACT

Articular cartilage is a soft tissue that distributes the loads in joints and transfers the compressive load to the underlying bone. At high rate and magnitudes of mechanical loading, cartilage and subchondral bone together are susceptible to damage. In addition, any disruption to the cartilage's structure, caused by injury, trauma or disorder such as osteoarthritis (OA), can alter the mechanism of load transfer from the cartilage to the underlying bone. Changes in the cartilage structure can also alter the ability of cartilage-bone to absorb and dissipate the impact energy. To investigate the effects of cartilage degradation on cartilage-bone shock absorption ability, the top 50% of the cartilage thickness was removed (modified cartilage) to mimic the cartilage thickness reduction in Grade III cartilage lesion and the remaining cartilage-bone unit (modified cartilage-bone) was compressed at high-rate (4% strain at 5 Hz). High-speed camera and microscope were used to capture microscopic deformation, and digital image correlation technique (DIC) employed to quantify the deformation of cartilage and bone. The mechanical properties (i.e. stiffness, strain, absorbed and dissipated energies) of cartilage and bone were calculated before and after the removal of the top 50% of the cartilage thickness, consisting of both the superficial tangential zone (STZ) and part of the middle zone of the cartilage. The results showed a significant degradation in the mechanical properties of the cartilage-bone unit after the removal of the top 50% cartilage thickness. The stiffness of the modified cartilage reduced significantly (by ~39%) and energy absorption in underlying bone increased by 32%, which can make the bone more vulnerable to damage in the modified cartilage-bone unit. In addition, the energy dissipation in the modified cartilage-bone unit was also increased by approximately 14%. These changes in mechanical properties suggest a crucial role of the STZ and middle zone (within the top 50% cartilage thickness) in protecting the underlying bone from the severe compressive impact loading. Results also indicated that under physiological contact stress of 7 MPa, strain in damaged cartilage was increased by 3.22% without affecting the mechanical behaviour of the underlying bone.


Subject(s)
Cartilage, Articular/physiology , Compressive Strength , Animals , Biomechanical Phenomena , Cattle , Materials Testing , Weight-Bearing
9.
J Mech Behav Biomed Mater ; 85: 51-56, 2018 09.
Article in English | MEDLINE | ID: mdl-29852352

ABSTRACT

Subchondral bone injury due to high magnitude and repetition of compressive loading is common in humans and athletic animals such as Thoroughbred racehorses. Repeated loading of the joint surface may alter the subchondral bone microstructure and initiate microdamage in the bone adjacent to the articular cartilage. Understanding the relationship between microdamage, microstructure and mechanical properties of the subchondral bone adjacent to the articular cartilage is, therefore, essential in understanding the mechanism of subchondral bone injury. In this study, we used high-resolution µCT scanning, a digital image-based strain measurement technique, and mechanical testing to evaluate the three-dimensional pre-existing microcracks, bone volume fraction (BVF) and bone mineral density (BMD), and mechanical properties (stiffness and hysteresis) of subchondral bone (n = 10) from the distopalmar aspect of the third metacarpal (MC3) condyles of Thoroughbred racehorses under high-rate compression. We specifically compared the properties of two regions of interest in the subchondral bone: the 2 mm superficial subchondral bone (SSB) and its underlying 2 mm deep subchondral bone (DSB). The DSB region was 3.0 ±â€¯1.2 times stiffer than its overlying SSB, yet it dissipated much less energy compared to the SSB. There was no correlation between structural properties (BVF and BMD) and mechanical properties (stiffness and energy loss), except for BMD and energy loss in SSB. The lower stiffness of the most superficial subchondral bone in the distal metacarpal condyles may protect the overlying cartilage and the underlying subchondral bone from damage under the high-rate compression experienced during galloping. However, repeated high-rate loading over time has the potential to inhibit bone turnover and induce bone fatigue, consistent with the high prevalence of subchondral bone injury and fractures in athletic humans and racehorses.


Subject(s)
Compressive Strength , Metacarpal Bones/physiology , Animals , Biomechanical Phenomena , Bone Density , Horses , Metacarpal Bones/diagnostic imaging , Weight-Bearing , X-Ray Microtomography
10.
Bone ; 114: 32-39, 2018 09.
Article in English | MEDLINE | ID: mdl-29857063

ABSTRACT

Skeletal fragility is a major complication of type 2 diabetes mellitus (T2D), but there is a poor understanding of mechanisms underlying T2D skeletal fragility. The increased fracture risk has been suggested to result from deteriorated bone microarchitecture or poor bone quality due to accumulation of advanced glycation end-products (AGEs). We conducted a clinical study to determine whether: 1) bone microarchitecture, AGEs, and bone biomechanical properties are altered in T2D bone, 2) bone AGEs are related to bone biomechanical properties, and 3) serum AGE levels reflect those in bone. To do so, we collected serum and proximal femur specimens from T2D (n = 20) and non-diabetic (n = 33) subjects undergoing total hip replacement surgery. A section from the femoral neck was imaged by microcomputed tomography (microCT), tested by cyclic reference point indentation, and quantified for AGE content. A trabecular core taken from the femoral head was imaged by microCT and subjected to uniaxial unconfined compression tests. T2D subjects had greater HbA1c (+23%, p ≤ 0.0001), but no difference in cortical tissue mineral density, cortical porosity, or trabecular microarchitecture compared to non-diabetics. Cyclic reference point indentation revealed that creep indentation distance (+18%, p ≤ 0.05) and indentation distance increase (+20%, p ≤ 0.05) were greater in cortical bone from T2D than in non-diabetics, but no other indentation variables differed. Trabecular bone mechanical properties were similar in both groups, except for yield stress, which tended to be lower in T2D than in non-diabetics. Neither serum pentosidine nor serum total AGEs were different between groups. Cortical, but not trabecular, bone AGEs tended to be higher in T2D subjects (21%, p = 0.09). Serum AGEs and pentosidine were positively correlated with cortical and trabecular bone AGEs. Our study presents new data on biomechanical properties and AGEs in adults with T2D, which are needed to better understand mechanisms contributing to diabetic skeletal fragility.


Subject(s)
Bone Density/physiology , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/metabolism , Femur Neck/diagnostic imaging , Femur Neck/metabolism , Glycation End Products, Advanced/metabolism , Adult , Aged , Arthroplasty, Replacement, Hip/trends , Biomechanical Phenomena/physiology , Female , Glycation End Products, Advanced/analysis , Humans , Male , Middle Aged , X-Ray Microtomography/methods
11.
Biomech Model Mechanobiol ; 17(3): 877-890, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29344755

ABSTRACT

In Thoroughbred racehorses, fractures of the distal limb are commonly catastrophic. Most of these fractures occur due to the accumulation of fatigue damage from repetitive loading, as evidenced by microdamage at the predilection sites for fracture. Adaptation of the bone in response to training loads is important for fatigue resistance. In order to better understand the mechanism of subchondral bone adaptation to its loading environment, we utilised a square root function defining the relationship between bone volume fraction [Formula: see text] and specific surface [Formula: see text] of the subchondral bone of the lateral condyles of the third metacarpal bone (MCIII) of the racehorse, and using this equation, developed a mathematical model of subchondral bone that adapts to loading conditions observed in vivo. The model is expressed as an ordinary differential equation incorporating a formation rate that is dependent on strain energy density. The loading conditions applied to a selected subchondral region, i.e. volume of interest, were estimated based on joint contact forces sustained by racehorses in training. For each of the initial conditions of [Formula: see text] we found no difference between subsequent homoeostatic [Formula: see text] at any given loading condition, but the time to reach equilibrium differed by initial [Formula: see text] and loading condition. We found that the observed values for [Formula: see text] from the mathematical model output were a good approximation to the existing data for racehorses in training or at rest. This model provides the basis for understanding the effect of changes to training strategies that may reduce the risk of racehorse injury.


Subject(s)
Adaptation, Physiological , Horses/physiology , Metacarpal Bones/physiology , Models, Biological , Animals , Stress, Mechanical
12.
J Biomech ; 55: 85-91, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28284669

ABSTRACT

Subchondral bone (SCB) microdamage is commonly observed in traumatic joint injuries and has been strongly associated with post-traumatic osteoarthritis (PTOA). Knowledge of the three-dimensional stress and strain distribution within the SCB tissue helps to understand the mechanism of SCB failure, and may lead to an improved understanding of mechanisms of PTOA initiation, prevention and treatment. In this study, we used high-resolution micro-computed tomography (µCT)-based finite element (FE) modelling of cartilage-bone to evaluate the failure mechanism and the locations of SCB tissue at high-risk of initial failure under compression. The µCT images of five cartilage-bone specimens with an average SCB thickness of 1.23±0.20mm were used to develop five µCT-based FE models. The FE models were analysed under axial compressions of approximately 30MPa applied to the cartilage surface while the bone edges were constrained. Strain and stress-based failure criteria were then applied to evaluate the failure mechanism of the SCB tissue under excessive compression through articular cartilage. µCT-based FE models predicted two locations in the SCB at high-risk of initial failure: (1) the interface of the calcified-uncalcified cartilage due to excessive tension, and (2) the trabecular bone beneath the subchondral plate due to excessive compression. µCT-based FE models of cartilage-bone enabled us to quantify the distribution of the applied compression which was transferred through the articular cartilage to its underlying SCB, and to investigate the mechanism and the mode of SCB tissue failure. Ultimately, the results will help to understand the mechanism of injury formation in relation to PTOA.


Subject(s)
Compressive Strength , Finite Element Analysis , Knee Joint/cytology , Stress, Mechanical , Cartilage, Articular/cytology , Humans , Knee Joint/diagnostic imaging , X-Ray Microtomography
13.
J Biomech ; 49(10): 2053-2059, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27260020

ABSTRACT

Subchondral bone microdamage due to high-impact loading is a key factor leading to post-traumatic knee osteoarthritis. A quantified assessment of the mechanical characteristics of subchondral bone at the tissue-level is essential to study the mechanism of impact-induced microdamage. We combined mechanical impact testing of equine cartilage-bone with µCT image-based finite element models (µFEM) of each specimen to determine subchondral bone (including calcified cartilage: CCSB) elastic tissue modulus and local stresses and strains associated with micro-fractures within the CCSB tissue. The material properties of each specimen-specific µFEM were iteratively adjusted to match the FE-predicted stress-strain curves with experimental results. Isotropic homogeneous material properties for both uncalcified cartilage (UC) and CCSB were assumed. UC large-deformation was simulated using hyperelastic material properties. Final UC shear and CCSB tissue elastic modulus of G=38±20MPa and E(t)=3.3±0.7GPa were achieved after fit procedure. The results suggested that initial failure in CCSB occurred at local tensile and compressive stresses of 29.47±5.34 MPa and 64.3±21.3MPa, and tensile and compressive strains of 1.12±0.06% and 1.99±0.41%, respectively. Tissue-level material properties can be used in finite element modeling of diarthrodial joints under impact loading, and also in designing artificial cartilage-bone to replace the damaged tissue in the joint. Results can provide an estimate for the threshold of initial failure in subchondral bone tissue due to an impact compression transmitted through the overlying articular cartilage.


Subject(s)
Bone and Bones/physiology , Cartilage, Articular/physiology , Animals , Bone and Bones/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Finite Element Analysis , Horses , Pressure , Stress, Mechanical , X-Ray Microtomography
14.
Knee ; 22(1): 24-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25456655

ABSTRACT

BACKGROUND: Internal tibial rotation is a risk factor for anterior cruciate ligament (ACL) injury. The effect of restraining tibial rotation (RTR) to prevent ACL injury during single-leg landing is not well understood. We aimed to investigate the effect of impact load and RTR on ACL injury with respect to flexion angle. We hypothesized that RTR could protect the knee from ACL injury compared to free tibial rotation (FTR) regardless of flexion angle and create a safety zone to protect the ACL. METHODS: Thirty porcine specimens were potted in a rig manufactured to replicate single-leg landing maneuvers. A mechanical testing machine was used to apply external forces in the direction of the tibial long axis. A 3D displacement sensor measured anterior tibial translation (ATT). The specimens were divided into 3 groups of 10 specimens and tested at flexion angles of 22 ± 1°, 37 ± 1° and 52 ± 1° (five RTR and five FTR) through a consecutive range of actuator displacements until ACL failure. After dissection, damage to the joint was visually recorded. Two-way ANOVA were utilized in order to compare compressive forces, torques and A/P displacements with respect to flexion angle. RESULTS: The largest difference between peak axial compressive forces (~3.4 kN) causing ACL injury between RTR and FTR was reported at a flexion angle of 22°. Tibial torques with RTR was in the same range and < 20 Nm at the instance and just before ACL failure, compared to a significant reduction when cartilage/bone damage (no ACL failure) was reported. Isolated ACL injuries were observed in ten of the 15 FTR specimens. Injuries to bone and cartilage were more common with RTR. CONCLUSIONS: RTR increases the threshold for ACL injury by elevating the compressive impact load required at lower flexion angles. These findings may contribute to neuromuscular training programs or brace designs used to avoid excessive internal/external tibial rotation. Caution must be exercised as bone/cartilage damage may result.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries/prevention & control , Knee Joint/physiology , Tibia/physiology , Animals , Biomechanical Phenomena , Humans , Risk Factors , Rotation , Swine
15.
J Biomech ; 46(11): 1913-20, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23731572

ABSTRACT

The aim of this study was to identify the contribution of the Soleus and Gastrocnemius (Gastroc) muscles' forces to anterior cruciate ligament (ACL) loading during single-leg landing. Although Quadriceps (Quads) and Hamstrings (Hams) muscles were recognized as the main contributors to the ACL loading, less is known regarding the role of ankle joint plantarflexors during landing. Eight healthy subjects performed single-landing tasks from 30 and 60cm heights. Scaled generic musculoskeletal models were developed in OpenSim to calculate lower limb muscle forces. The model consisted of 10 segments with 23 degrees of freedom and 92 lower body muscle-tendon units. Knee joint reaction forces were calculated based on the estimated muscle forces and used to predict ACL forces. We hypothesized that Soleus and Gastrocs muscle forces have opposite effects on tibial loading in the anterior/posterior directions. In situations where greater landing height would lead to an increase in GRF and risk of ACL injury, we further hypothesized that posterior forces of the Soleus and Hams would increase correspondingly to help protect the ACL during a safe landing maneuver. Our results demonstrated the antagonistic and agonistic roles of Gastrocs and Soleus respectively in ACL loading. The posterior force of Soleus reached 28-32% of Ham's posterior force for both landing heights at peak GRF while the posterior force of Gastrocs on femur was negligible. ACL injury risk during single-leg landing is not only dependent on knee musculature but also influenced by muscles that do not span the knee joint, such as the Soleus. In conclusion, the role of the ankle plantarflexors should be considered when developing training strategies for ACL injury prevention.


Subject(s)
Anterior Cruciate Ligament/physiology , Muscle, Skeletal/physiology , Sports/physiology , Anterior Cruciate Ligament Injuries , Biomechanical Phenomena , Femur/physiology , Humans , Knee Joint/physiology , Leg/physiology , Male , Models, Biological , Tibia/physiology , Weight-Bearing/physiology , Young Adult
16.
J Mech Behav Biomed Mater ; 26: 127-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23746699

ABSTRACT

Despite the important role of subchondral bone in maintaining the integrity of the overlying articular cartilage, little research has focused on measuring its mechanical behavior, particularly under injurious load conditions such as impact compression. In this study, the stiffness and the absorbed energy of subchondral bone were compared to that of its overlying cartilage by applying impact compression to equine cartilage-bone specimens. Deformations of the cartilage and subchondral bone were examined independently within the cartilage-bone unit by analyzing real-time images of cartilage-bone explants. Peak subchondral bone and cartilage stiffness (mean ± SD) were 800.7 ± 250.0 MPa and 119.9 ± 50.8 MPa respectively. The maximum absorbed energy per unit volume of subchondral bone was approximately 4 times lower than that of cartilage. Micro-computed tomography (µCT) images at 9 µm resolution revealed oblique fissures at the cartilage articular surface. At the cartilage-bone interface, micro-cracks as thin as 30 µm in width and micro-fractures of width 200 µm could be seen in the µCT images. The relative energy loss in bone was 76.5 ± 6.8% in specimens with bone fracture and 23.0 ± 20.4% in specimens without bone fracture. Our results indicate that both articular cartilage and subchondral bone absorb shock under impact compression, but the energy absorption of bone is much higher in specimens that fracture. This may spare the overlying cartilage from immediate injury, but is a potential risk for subsequent post-traumatic osteoarthritis (PTOA).


Subject(s)
Bone and Bones/physiology , Cartilage, Articular/physiology , Compressive Strength , Materials Testing , Absorption , Animals , Bone and Bones/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Fractures, Bone/diagnostic imaging , Fractures, Bone/physiopathology , Horses , Weight-Bearing , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...