Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 8(7): 4344-4362, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-28793444

ABSTRACT

Zirconia-toughened alumina (ZTA) using yttria-stabilised zirconia is a good option for ceramic-ceramic bearing couples for hip joint replacement. Gelcasting is a colloidal processing technique capable of producing complex products with a range of dimensions and materials by a relatively low-cost production process. Using gelcasting, ZTA samples were prepared, optimising the stages of fabrication, including slurry preparation with varying solid loadings, moulding and de-moulding, drying and sintering. Density, hardness, fracture toughness, flexural strength and grain size were observed relative to slurry solid loadings between 58 and 62 vol. %, as well as sintering temperatures of 1550 °C and 1650 °C. Optimal conditions found were plastic mould, 4000 g/mol PEG with 30 vol. % concentration, 61% solid loading and Ts = 1550 °C. ZTA samples of high density (maximum 99.1%), high hardness (maximum 1902 HV), high fracture toughness (maximum 5.43 MPa m1/2) and high flexural strength (maximum 618 MPa) were successfully prepared by gelcasting and pressureless sintering.

2.
J Mater Sci Mater Med ; 25(11): 2471-80, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25052736

ABSTRACT

The elastic modulus of metallic orthopaedic implants is typically 6-12 times greater than cortical bone, causing stress shielding: over time, bone atrophies through decreased mechanical strain, which can lead to fracture at the implantation site. Introducing pores into an implant will lower the modulus significantly. Three dimensional printing (3DP) is capable of producing parts with dual porosity features: micropores by process (residual pores from binder burnout) and macropores by design via a computer aided design model. Titanium was chosen due to its excellent biocompatibility, superior corrosion resistance, durability, osteointegration capability, relatively low elastic modulus, and high strength to weight ratio. The mechanical and physical properties of 3DP titanium were studied and compared to the properties of bone. The mechanical and physical properties were tailored by varying the binder (polyvinyl alcohol) content and the sintering temperature of the titanium samples. The fabricated titanium samples had a porosity of 32.2-53.4% and a compressive modulus of 0.86-2.48 GPa, within the range of cancellous bone modulus. Other physical and mechanical properties were investigated including fracture strength, density, fracture toughness, hardness and surface roughness. The correlation between the porous 3DP titanium-bulk modulus ratio and porosity was also quantified.


Subject(s)
Biocompatible Materials/chemical synthesis , Printing, Three-Dimensional , Prostheses and Implants , Titanium/chemistry , Compressive Strength , Elastic Modulus , Equipment Failure Analysis , Hardness , Materials Testing , Porosity , Stress, Mechanical , Surface Properties , Tensile Strength
3.
Chem Commun (Camb) ; 47(35): 9849-51, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21808798

ABSTRACT

ZnSb nanotubes were grown through a template free electrodeposition method under over-potential conditions. The growth of the nanotubes was attributed to the template effect from H(2) bubbles. Due to their hollow structure, the ZnSb nanotubes depicted better Li ion storage performance compared to that of ZnSb nanoparticles deposited under different conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...