Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Signals Sens ; 13(4): 280-289, 2023.
Article in English | MEDLINE | ID: mdl-37809014

ABSTRACT

Background: Simulation of tomographic imaging systems with fan-beam geometry, estimation of scattered beam profile using Monte Carlo techniques, and scatter correction using estimated data have always been new challenges in the field of medical imaging. The most important aspect is to ensure the results of the simulation and the accuracy of the scatter correction. This study aims to simulate 128-slice computed tomography (CT) scan using the Geant4 Application for Tomographic Emission (GATE) program, to assess the validity of this simulation and estimate the scatter profile. Finally, a quantitative comparison of the results is made from scatter correction. Methods: In this study, 128-slice CT scan devices with fan-beam geometry along with two phantoms were simulated by GATE program. Two validation methods were performed to validate the simulation results. The data obtained from scatter estimation of the simulation was used in a projection-based scatter correction technique, and the post-correction results were analyzed using four quantities, such as: pixel intensity, CT number inaccuracy, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Results: Both validation methods have confirmed the appropriate accuracy of the simulation. In the quantitative analysis of the results before and after the scatter correction, it should be said that the pixel intensity patterns were close to each other, and the accuracy of the CT scan number reached <10%. Moreover, CNR and SNR have increased by more than 30%-65% respectively in all studied areas. Conclusion: The comparison of the results before and after scatter correction shows an improvement in CNR and SNR while a reduction in cupping artifact according to pixel intensity pattern and enhanced CT number accuracy.

2.
J Magn Reson Imaging ; 54(6): 1744-1751, 2021 12.
Article in English | MEDLINE | ID: mdl-34142413

ABSTRACT

BACKGROUND: Investigation of cortical bone using magnetic resonance imaging is a developing field, which uses short/ultrashort echo time (TE) pulse sequences to quantify bone water content and to obtain indirect information about bone microstructure. PURPOSE: To improve the accuracy of the previously proposed technique of free water T1 quantification and to seek the relationship between cortical bone free water T1 and its mechanical competence. STUDY TYPE: Prospective. SUBJECTS: Twenty samples of bovine tibia bone. FIELD STRENGTH/SEQUENCES: 3.0 T; ultra-fast two-dimensional gradient echo, Radio frequency-spoiled three-dimensional gradient echo. ASSESSMENT: Cortical bone free water T1 was quantified via three different methods: inversion recovery (IR), variable flip angle (VFA), and variable repetition time (VTR). Signal-to-noise ratio was measured by dividing the signal of each segmented sample to background noise. Segmentation was done manually. The effect of noise on T1 quantification was evaluated. Then, the samples were subjected to mechanical compression test to measure the toughness, yield stress, ultimate stress, and Young modulus. STATISTICAL TESTS: All the statistical analysis (Shapiro-Wilk, way analysis of variance, paired t test, Pearson correlation, and Bland-Altman plot) were done using SPSS. RESULTS: Significant difference was found between T1 quantification groups (P < 0.05). Average T1 of each quantification method differed significantly after adding noise (P < 0.05). VFA-T1 values significantly correlated with toughness (r = -0.68, P < 0.05), ultimate stress (r = -0.71, P < 0.05), and yield stress (r = -0.62, P < 0.05). No significant correlation was found between VTR-T1 values and toughness (P = 0.07), ultimate stress (P = 0.47), yield stress (P = 0.30), and Young modulus (P = 0.39). DATA CONCLUSION: Pore water T1 value is associated with bone mechanical competence, and VFA method employing short-TE pulse sequence seems a superior technique to VTR method for this quantification. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: 1.


Subject(s)
Magnetic Resonance Imaging , Water , Animals , Cattle , Cortical Bone/diagnostic imaging , Humans , Phantoms, Imaging , Prospective Studies , Reproducibility of Results
3.
Magn Reson Imaging ; 71: 17-24, 2020 09.
Article in English | MEDLINE | ID: mdl-32387394

ABSTRACT

PURPOSE: The purpose of our study was to use Dual-TR STE-MR protocol as a clinical tool for cortical bone free water quantification at 1.5 T and validate it by comparing the obtained results (MR-derived results) with dehydration results. METHODS: Human studies were compliant with HIPPA and were approved by the institutional review board. Short Echo Time (STE) MR imaging with different Repetition Times (TRs) was used for quantification of cortical bone free water T1 (T1free) and concentration (ρfree). The proposed strategy was compared with the dehydration technique in seven bovine cortical bone samples. The agreement between the two methods was quantified by using Bland and Altman analysis. Then we applied the technique on a cross-sectional population of thirty healthy volunteers (18F/12M) and examined the association of the biomarkers with age. RESULTS: The mean values of ρfree for bovine cortical bone specimens were quantified as 4.37% and 5.34% by using STE-MR and dehydration techniques, respectively. The Bland and Altman analysis showed good agreement between the two methods along with the suggestion of 0.99% bias between them. Strong correlations were also reported between ρfree (r2 = 0.62) and T1free and age (r2 = 0.8). The reproducibility of the method, evaluated in eight subjects, yielded an intra-class correlation of 0.95. CONCLUSION: STE-MR imaging with dual-TR strategy is a clinical solution for quantifying cortical bone ρfree and T1free.


Subject(s)
Cortical Bone/diagnostic imaging , Cortical Bone/metabolism , Magnetic Resonance Imaging , Water/metabolism , Adult , Animals , Cattle , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Male , Middle Aged , Reproducibility of Results , Young Adult
4.
J Clin Densitom ; 23(1): 108-116, 2020.
Article in English | MEDLINE | ID: mdl-30902572

ABSTRACT

INTRODUCTION: Cortical bone is affected by metabolic diseases. Some studies have shown that lower cortical bone mineral density (BMD) is related to increases in fracture risk which could be diagnosed by quantitative computed tomography (QCT). Nowadays, hybrid iterative reconstruction-based (HIR) computed tomography (CT) could be helpful to quantify the peripheral bone tissue. A key focus of this paper is to evaluate liquid calibration phantoms for BMD quantification in the tibia and under hybrid iterative reconstruction-based-CT with the different hydrogen dipotassium phosphate (K2HPO4) concentrations phantoms. METHODOLOGY: Four ranges of concentrations of K2HPO4 were made and tested with 2 exposure settings. Accuracy of the phantoms with ash gravimetry and intermediate K2HPO4 concentration as hypothetical patients were evaluated. The correlations and mean differences between measured equivalent QCT BMD and ash density as a gold standard were calculated. Relative percentage error (RPE) in CT numbers of each concentration over a 6-mo period was reported. RESULTS: The correlation values (R2 was close to 1.0), suggested that the precision of QCT-BMD measurements using standard and ultra-low dose settings were similar for all phantoms. The mean differences between QCT-BMD and the ash density for low concentrations (about 93 mg/cm3) were lower than high concentration phantoms with 135 and 234 mg/cm3 biases. In regard to accuracy test for hypothetical patient, RPE was up to 16.1% for the low concentration (LC) phantom for the case of high mineral content. However, the lowest RPE (0.4 to 1.8%) was obtained for the high concentration (HC) phantom, particularly for the high mineral content case. In addition, over 6 months, the K2HPO4 concentrations increased 25% for 50 mg/cm3 solution and 0.7 % for 1300 mg/cm3 solution in phantoms. CONCLUSION: The excellent linear correlations between the QCT equivalent density and the ash density gold standard indicate that QCT can be used with submilisivert radiation dose. We conclude that using liquid calibration phantoms with a range of mineral content similar to that being measured will minimize bias. Finally, we suggest performing BMD measurements with ultra-low dose scan concurrent with iterative-based reconstruction to reduce radiation exposure.


Subject(s)
Bone Density , Tomography, X-Ray Computed/methods , Calibration , Cortical Bone/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Phosphates , Potassium Compounds , Tibia/diagnostic imaging
5.
MAGMA ; 33(3): 385-392, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31732894

ABSTRACT

OBJECTIVE: Assessment of iron content in the liver is crucial for diagnosis/treatment of iron-overload diseases. Nonetheless, T2*-based methods become challenging when fat and iron are simultaneously present. This study proposes a phantom design concomitantly containing various concentrations of iron and fat suitable for devising accurate simultaneous T2* and fat quantification technique. MATERIALS AND METHODS: A 46-vial iron-fat-water phantom with various iron concentrations covering clinically relevant T2* relaxation time values, from healthy to severely overloaded liver and wide fat percentages ranges from 0 to 100% was prepared. The phantom was constructed using insoluble iron (II, III) oxide powder containing microscale particles. T2*-weighted imaging using multi-gradient-echo (mGRE) sequence, and chemical shift imaging spin-echo (CSI-SE) Magnetic Resonance Spectroscopy (MRS) data were considered for the analysis. T2* relaxation times and fat fractions were extracted from the MR signals to explore the effects of fat and iron overload. RESULTS: Size distribution of iron oxide particles for Magnetite fits with a lognormal function with a mean size of about 1.17 µm. Comparison of FF color maps, estimated from bi- and mono-exponential model indicated that single-T2* fitting model resulted in lower NRMSD. Therefore, T2* values from the mono-exponential signal equation were used and expressed the relationship between relaxation time value across all iron (Fe) and fat concentration as [Formula: see text], with R-squared = 0.89. DISCUSSION: The proposed phantom design with microsphere iron particles closely simulated the single-T2* behavior of fatty iron-overloaded liver in vivo.


Subject(s)
Adipose Tissue/diagnostic imaging , Iron Overload/diagnostic imaging , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Benchmarking , Ferric Compounds/chemistry , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Spectroscopy , Particle Size , Reproducibility of Results , Water
6.
J Med Imaging Radiat Sci ; 50(1): 157-162, 2019 03.
Article in English | MEDLINE | ID: mdl-30777238

ABSTRACT

INTRODUCTION: Quantitative computed tomography (QCT) can supplement dual x-ray absorptiometry by enabling geometric and compartmental bone assessments. Whole-body spiral CT scanners are widely available and require a short scanning time of seconds, in contrast to peripheral QCT scanners, which require several minutes of scanning time. This study designed and evaluated the accuracy and precision of a homemade QCT calibration phantom using a whole-body spiral CT scanner. MATERIALS AND METHODS: The QCT calibration phantom consisted of K2HPO4 solutions as reference. The reference material with various concentrations of 0, 50, 100, 200, 400, 1000, and 1200 mg/cc of K2HPO4 in water were used. For designing the phantom, we used the ABAQUS software. RESULTS: The phantoms were used for performance assessment of QCT method through measurement of accuracy and precision errors, which were generally less than 5.1% for different concentrations. The correlation between CT numbers and concentration were close to one (R2 = 0.99). DISCUSSION: Because whole-body spiral CT scanners allow central bone densitometry, evaluating the accuracy and precision for the easy to use calibration phantom may improve the QCT bone densitometry test. CONCLUSION: This study provides practical directions for applying a homemade calibration phantom for bone mineral density quantification in QCT technique.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/standards , Calibration , Equipment Design , Reproducibility of Results
7.
Med J Islam Repub Iran ; 33: 156, 2019.
Article in English | MEDLINE | ID: mdl-32280662

ABSTRACT

Background: Cortical deceleration is the main reason for bone loss at peripheral sites. It was suggested that when peripheral bones were assessed for osteoporosis, management and therapy can be administered early. The main aim of this study was to assess the relationships between the central and peripheral measurements at different skeleton bone sites (spine, femur, forearm, tibia, and calcaneus) with available modalities: DXA, QUS, and MDCT-QCT. Methods: The volunteers recruited in this study did not have any history or evidence of metabolic bone disease. Blood test and DXA measurements were used as inclusion criteria to select 40 healthy participants. The selected volunteers underwent 3 imaging modalities: QCT, DXA, and QUS. DXA-based measurements were made on 3 sites, including spine, femur, and forearm. QCT and QUS measurements were done for distal of tibia and calcaneus bones, respectively. The extracted parameters from the 3 modalities were analyzed using a bivariate (Pearson) correlation (r) in statistical software. Results: The results showed moderate to good correlations between spongy bones in central and peripheral sites from all the modalities. However, there was no correlation between MDCT measures and central bone values. According to correlations between different peripheral sits, aBMD of 33% radius and trabecular vBMD in 38% distal tibia showed weak but significant relationship between peripheral bones (r=-0.342, p=0.044). Conclusion: The findings demonstrated how bones in central and peripheral sites were correlated. Multimodality imaging was used in this group of healthy volunteers. Also, it was found that QCT-based MDCT needs more optimization and requires further investigations.

8.
Iran J Radiol ; 9(3): 145-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23329980

ABSTRACT

BACKGROUND: With the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels (DRLs) has been developed as a practical aid in the optimization of patient protection in diagnostic radiology. OBJECTIVES: To assess the radiation doses to neonates from diagnostic radiography (chest and abdomen). This study has been carried out in the neonatal intensive care unit of a province in Iran. PATIENTS AND METHODS: Entrance surface dose (ESD) was measured directly with thermoluminescent dosimeters (TLDs). The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types. RESULTS: The mean ESD for chest and abdomen examinations were 76.3 µGy and 61.5 µGy, respectively. DRLs for neonate in NICUs of the province were 88 µGy for chest and 98 µGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10 (-6) for male and 4.43 × 10 (-6) for female. For chest X-ray, it was equal to 2.54 × 10 (-6) for male and 1.17 × 10 (-5) for female patients. CONCLUSION: DRLs for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance (FFD). Probably lack of collimation also affected some exams in the NICUs.

9.
Nephrourol Mon ; 4(3): 541-4, 2012.
Article in English | MEDLINE | ID: mdl-23573482

ABSTRACT

BACKGROUND: Imaging of the urinary system is considered to be responsible for significant radiation in children. OBJECTIVES: This study was conducted to measure and compare the radiation dose in spot films with photofluorography voiding cystourethrography (VCUG) in children. PATIENTS AND METHODS: 111 [222 Kidney Urinary Unit (KUU)] pediatric patients, aged 1 month to 5 years, with symptomatic urinary tract infection were enrolled in the study. Peak tube voltage (kVp), exposure setting (mAs), focus film distance (FFD), film size and DAP (after the exam) were recorded for all patients. To evaluate the validity of the photographs, we calculated sensitivity, specificity, predictive values and agreement between the two methods using the kappa statistic. If the kappa was greater than 0.75, between 0.4-0.75 or less than 0.4, then the agreement was excellent, good or poor, respectively. P values less than 0.05 were statistically significant. RESULTS: Vesicoureteral reflux (VUR) was detected in 74 KUU (33.3%) in standard films and in 71 (32%) in photographic images. The photographs had no false positives and 3 false negatives. Therefore, the new method had a sensitivity of 96%, a specificity of 100%, a negative predictive value of 98% and a positive predictive value of 100%. The two-method agreement in the VUR diagnosis for grades 1, 4, 5 and the overall grading were excellent (kappa > 0.83); however, for grades 2 and 3, agreement was 80%, which was good (kappa = 0.64). CONCLUSIONS: Our study suggests that the high validity and excellent agreement of the photofluorography method in the diagnosis and grading of VUR, which is comparable to spot films and represents a 50%-90% reduction in radiation, makes it the preferred method.

SELECTION OF CITATIONS
SEARCH DETAIL
...