Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Robot AI ; 8: 650134, 2021.
Article in English | MEDLINE | ID: mdl-34124175

ABSTRACT

Instinctive detection of infections by carefully inspecting the signs on the plant leaves is an easier and economic way to diagnose different plant leaf diseases. This defines a way in which symptoms of diseased plants are detected utilizing the concept of feature learning (Sulistyo et al., 2020). The physical method of detecting and analyzing diseases takes a lot of time and has chances of making many errors (Sulistyo et al., 2020). So a method has been developed to identify the symptoms by just acquiring the chili plant leaf image. The methodology used involves image database, extracting the region of interest, training and testing images, symptoms/features extraction of the plant image using moments, building of the symptom vector feature dataset, and finding the correlation and similarity between different symptoms of the plant (Sulistyo et al., 2020). This will detect different diseases of the plant.

2.
Front Robot AI ; 7: 113, 2020.
Article in English | MEDLINE | ID: mdl-33501279

ABSTRACT

Automatic fingerprint identification systems (AFIS) make use of global fingerprint information like ridge flow, ridge frequency, and delta or core points for fingerprint alignment, before performing matching. In latent fingerprints, the ridges will be smudged and delta or core points may not be available. It becomes difficult to pre-align fingerprints with such partial fingerprint information. Further, global features are not robust against fingerprint deformations; rotation, scale, and fingerprint matching using global features pose more challenges. We have developed a local minutia-based convolution neural network (CNN) matching model called "Combination of Nearest Neighbor Arrangement Indexing (CNNAI)." This model makes use of a set of "n" local nearest minutiae neighbor features and generates rotation-scale invariant feature vectors. Our proposed system doesn't depend upon any fingerprint alignment information. In large fingerprint databases, it becomes very difficult to query every fingerprint against every other fingerprint in the database. To address this issue, we make use of hash indexing to reduce the number of retrievals. We have used a residual learning-based CNN model to enhance and extract the minutiae features. Matching was done on FVC2004 and NIST SD27 latent fingerprint databases against 640 and 3,758 gallery fingerprint images, respectively. We obtained a Rank-1 identification rate of 80% for FVC2004 fingerprints and 84.5% for NIST SD27 latent fingerprint databases. The experimental results show improvement in the Rank-1 identification rate compared to the state-of-art algorithms, and the results reveal that the system is robust against rotation and scale.

3.
Front Robot AI ; 7: 594412, 2020.
Article in English | MEDLINE | ID: mdl-33501354

ABSTRACT

Automatic Latent Fingerprint Identification Systems (AFIS) are most widely used by forensic experts in law enforcement and criminal investigations. One of the critical steps used in automatic latent fingerprint matching is to automatically extract reliable minutiae from fingerprint images. Hence, minutiae extraction is considered to be a very important step in AFIS. The performance of such systems relies heavily on the quality of the input fingerprint images. Most of the state-of-the-art AFIS failed to produce good matching results due to poor ridge patterns and the presence of background noise. To ensure the robustness of fingerprint matching against low quality latent fingerprint images, it is essential to include a good fingerprint enhancement algorithm before minutiae extraction and matching. In this paper, we have proposed an end-to-end fingerprint matching system to automatically enhance, extract minutiae, and produce matching results. To achieve this, we have proposed a method to automatically enhance the poor-quality fingerprint images using the "Automated Deep Convolutional Neural Network (DCNN)" and "Fast Fourier Transform (FFT)" filters. The Deep Convolutional Neural Network (DCNN) produces a frequency enhanced map from fingerprint domain knowledge. We propose an "FFT Enhancement" algorithm to enhance and extract the ridges from the frequency enhanced map. Minutiae from the enhanced ridges are automatically extracted using a proposed "Automated Latent Minutiae Extractor (ALME)". Based on the extracted minutiae, the fingerprints are automatically aligned, and a matching score is calculated using a proposed "Frequency Enhanced Minutiae Matcher (FEMM)" algorithm. Experiments are conducted on FVC2002, FVC2004, and NIST SD27 latent fingerprint databases. The minutiae extraction results show significant improvement in precision, recall, and F1 scores. We obtained the highest Rank-1 identification rate of 100% for FVC2002/2004 and 84.5% for NIST SD27 fingerprint databases. The matching results reveal that the proposed system outperforms state-of-the-art systems.

SELECTION OF CITATIONS
SEARCH DETAIL