Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(2): 024307, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31301720

ABSTRACT

We present experimentally determined potential energy curves for the 10(0+)[43Π0] electronic state of NaCs. The 10(0+)[43Π0] state exhibits a double-minimum structure, resulting in a distinctive bound-free fluorescence signature. The perturbation facilitated optical-optical double resonance method was used to obtain Doppler-free excitation spectra corresponding to rovibrational transitions to the 10(0+)[43Π0] state. Spectroscopic constants were determined to summarize data belonging to inner well, outer well, and above the barrier regions of the electronic state. The Rydberg-Klein-Rees and inverted perturbation approach methods were used to construct a potential which reproduces the experimental rovibrational energies within a root-mean-square deviation of 2.33 cm-1. An alternative to the pointwise potential approach was also used to determine the potential energy curve by directly fitting an expanded Morse oscillator functional form. Advantages between the two approaches as they apply to double minimum wells are discussed.

2.
J Chem Phys ; 147(14): 144303, 2017 Oct 14.
Article in English | MEDLINE | ID: mdl-29031279

ABSTRACT

We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.

3.
J Chem Phys ; 142(22): 224301, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071704

ABSTRACT

We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A(1)Σ(+)) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B(λ)(j, j') for each j → j' transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j' between 0 and 50, and total (translational and rotational) energies in the range 0.0002-0.0025 a.u. (∼44-550 cm(-1)). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j'. Finally, we compare the exact quantum results for j → j' transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.

SELECTION OF CITATIONS
SEARCH DETAIL
...