Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Clin Exp Med ; 30(9): 967-980, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34418332

ABSTRACT

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF) acts both as an enzyme in the nicotinamide adenine dinucleotide (NAD) synthesis pathway as well as an extracellular hormone (eNampt). Among its effects, eNampt exerts potent pro-inflammatory effects. We have recently shown that, in rats, eNampt stimulates corticosterone secretion by acting through the pituitary rather than the hypothalamus. OBJECTIVES: To investigate the mechanism of action of eNampt on the secretion of adrenocorticotropic hormone (ACTH) and chemokine (C-C motif) ligand 2 (CCL2), which are cytokines secreted by pituitary neuroendocrine tumors. MATERIAL AND METHODS: The research was carried out on the AtT-20 murine cell line, primary rat pituitary cell culture, isolated pituitary corticotropes, and in vivo. The effects of the performed experiments were examined using the following methods: gene expression profiling using microarrays, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS: The results suggest that eNampt stimulates ACTH secretion from rat corticotropes both directly and indirectly. Indirect action most likely occurs through interleukin (IL)-6 secreted by folliculostellate cells of the pituitary gland. In isolated ACTH cells of the rat pituitary gland, eNampt stimulates the expression of genes involved in the immune response. Among them, the protein encoded by the CCL2 gene seems to also be involved in the regulation of corticotropin-releasing hormone (CRH)-dependent metabolism. Unlike rat corticotropes, murine AtT-20 corticotropic cells do not react to either eNampt or Fk866 (the inhibitor of Nampt enzymatic action). CONCLUSIONS: The eNampt stimulates the secretion of ACTH from rat corticotropes indirectly and directly, likely by stimulating IL-6 secretion from folliculostellate cells of the pituitary gland. This effect was not observed in the AtT-20 corticotropic cell cancer cell line.


Subject(s)
Adrenocorticotropic Hormone , Nicotinamide Phosphoribosyltransferase , Animals , Cell Communication , Chemokine CCL2 , Cytokines , Interleukin-6 , Mice , Rats
2.
Adv Clin Exp Med ; 28(6): 737-746, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30843677

ABSTRACT

BACKGROUND: Galanin-like peptide (Galp) and alarin (Ala) are 2 new members of the galanin peptide family. Galanin (Gal), the "parental" peptide of the entire family, is known to regulate numerous physiological processes, including energy and osmotic homeostasis, reproduction, food intake, and secretion of adrenocortical hormones. Galp and Ala are known to regulate food intake. In the rat, Galp mRNA has been found in the brain, exclusively in the hypothalamic arcuate nucleus (ARC) and median eminence, which are involved in the regulation of energy homeostasis. Alarin-like immunoreactivity is present in the locus coeruleus (LC) and the ARC of rats and mice. OBJECTIVES: The aim of the study was to investigate the expression of Ala, Galp and their receptors in the organs of the hypothalamo-pituitary-adrenal (HPA) axis of the rat. MATERIAL AND METHODS: The expression of the examined genes was measured in different models of adrenal growth of the rat in vivo (postnatal ontogenesis, compensatory adrenal growth, adrenocortical regeneration, adrenocorticotropic hormone (ACTH) administration). The expression was evaluated using the Affymetrix® microarray system or quantitative polymerase chain reaction (qPCR). RESULTS: The expression of Ala gene was observed in each organ of the HPA axis (the hypothalamus, hypophysis and adrenal gland). The elevated level of expression of this gene was observed in the pituitary of 2-day rats, while very low levels of Ala mRNA were observed in the adrenals. Galp mRNA expression was observed only in the hypothalamus and the hypophysis during postnatal ontogenesis. The expression of Gal receptors was demonstrated in the hypothalamus, the hypophysis and the adrenal gland. In different compartments of the adrenal glands of adult, intact male and female rats, the expression of Ala, Galp and galanin receptor 1 (Galr1) genes was negligible, but the expression of galanin receptor 2 (Galr2), galanin receptor 3 (Galr3) and neurotrophic receptor tyrosine kinase 2 (Ntrk2) genes was noticeable. CONCLUSIONS: The examined genes showed different expression levels within the studied HPA axis; some of them were neither expressed in the hypothalamus or the pituitary gland, nor in the adrenal gland.


Subject(s)
Adrenal Glands/metabolism , Galanin-Like Peptide/genetics , Hypothalamus/metabolism , Pituitary Gland/metabolism , Animals , Female , Galanin-Like Peptide/metabolism , Hypothalamo-Hypophyseal System , Male , Mice , Oligonucleotide Array Sequence Analysis , Pituitary-Adrenal System , Rats , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...