Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 97: 66-70, 2020 12.
Article in English | MEDLINE | ID: mdl-33038413

ABSTRACT

The aim of the current work was to evaluate applicability of triacetate cellulose hollow fiber vitrification (HFV) method for cryopreservation of groups of in vitro matured bovine oocytes (12-17 oocytes per device). We also attempted to optimize HFV protocol by altering concentration of non-permeating cryoprotectant (sucrose) in vitrification solution and concentration of extracellular Ca2+ by using a calcium-free base medium for preparation of vitrification/rewarming solutions with ethylene glycol (EG) as a single permeating cryoprotectant. Neither of modifications of HFV protocol significantly affected survival or fertilization rates of the vitrified bovine oocytes. Embryo development rates in the vitrification groups were lower than those in the control (31.2% of blastocysts at Day 8 post IVF). Use of vitrification/rewarming solutions with lower Ca2+ concentration and EG did not significantly improve embryo development rates. An increase of sucrose concentration in vitrification solution from 0.5 to 1.0 M significantly improved blastocyst yield on Day 8 post IVF (21.1-23.4% vs 3.1-3.5%; p < 0.05). Obtained results indicated that sufficient dehydration of the oocytes and/or the solution surrounding them in hollow fiber before immersion into liquid nitrogen is an important factor for successful vitrification. Use of HFV method allowed simplification and standardization of vitrification/rewarming procedures. Triacetate cellulose hollow fibers can be used successfully for cryopeservation of groups of in vitro matured bovine oocytes.


Subject(s)
Cryopreservation , Vitrification , Animals , Blastocyst , Cattle , Cellulose , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Fertilization in Vitro , Oocytes
2.
Cloning Stem Cells ; 11(2): 287-92, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19508117

ABSTRACT

We studied the dynamics of in vitro maturation of bovine oocytes, the efficiency of asynchronously matured oocytes as recipients for the generation of embryos produced by nuclear transfer, and the potential for using blind enucleation of zona-free bovine oocytes in bovine cloning. At 15 h after the initiation of maturation (hpm), oocytes were freed from both cumulus cells and the zona pellucida, and the dynamics of oocyte maturation were monitored every 30 min through the criterion of extrusion of the first polar body (PB1). More than 41% of bovine oocytes had extruded PB1 by 16.5 hpm, and were designated as representing a group of rapidly maturing oocytes. A second group, comprising about 25% of all oocytes, had extruded PB1 by 18.5-20.0 hpm. Examination of Hoechst 33342-stained samples demonstrated that PB1 on the surfaces of zona-free bovine oocytes were always located near the maternal chromosomes. Zona-free oocytes were enucleated by removing PB1 and about 3% of the adjacent oocyte cytoplasm without chromatin staining. Successful enucleation of zona-free bovine oocytes was achieved in 96.9% of cases. The rate of development to the blastocyst stage was significantly greater in embryos reconstructed from rapidly maturing oocytes (47.8%) than with oocytes maturing at 18.0-20.0 hpm (33.3%). Overall, two large groups of bovine oocytes could be distinguished during in vitro maturation by the time required to reach the second stage of metaphase. Bovine embryos reconstructed from rapidly maturing enucleated oocytes had a significantly greater rate of development to the blastocyst stage than did embryos derived from later-maturing oocytes. We conclude that blind enucleation is a simple and efficient method for preparing cytoplasts in zona-free bovine cloning.


Subject(s)
Cell Nucleus/metabolism , Cloning, Organism/methods , Nuclear Transfer Techniques , Oocytes/physiology , Zona Pellucida/metabolism , Animals , Cattle , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Female , Oocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...