Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Big Data ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38603580

ABSTRACT

Existing data engine implementations do not properly manage the conflict between the need of protecting and sharing data, which is hampering the spread of big data applications and limiting their impact. These two requirements have often been studied and defined independently, leading to a conceptual and technological misalignment. This article presents the architecture and technical implementation of a data engine addressing this conflict by integrating a new governance solution based on access control within a big data analytics pipeline. Our data engine enriches traditional components for data governance with an access control system that enforces access to data in a big data environment based on data transformations. Data are then used along the pipeline only after sanitization, protecting sensitive attributes before their usage, in an effort to facilitate the balance between protection and quality. The solution was tested in a real-world smart city scenario using the data of the Oslo city transportation system. Specifically, we compared the different predictive models trained with the data views obtained by applying the secure transformations required by different user roles to the same data set. The results show that the predictive models, built on data manipulated according to access control policies, are still effective.

2.
BMC Bioinformatics ; 16 Suppl 9: S7, 2015.
Article in English | MEDLINE | ID: mdl-26051695

ABSTRACT

BACKGROUND: The understanding of mechanisms and functions of microRNAs (miRNAs) is fundamental for the study of many biological processes and for the elucidation of the pathogenesis of many human diseases. Technological advances represented by high-throughput technologies, such as microarray and next-generation sequencing, have significantly aided miRNA research in the last decade. Nevertheless, the identification of true miRNA targets and the complete elucidation of the rules governing their functional targeting remain nebulous. Computational tools have been proven to be fundamental for guiding experimental validations for the discovery of new miRNAs, for the identification of their targets and for the elucidation of their regulatory mechanisms. DESCRIPTION: ComiRNet (Co-clustered miRNA Regulatory Networks) is a web-based database specifically designed to provide biologists and clinicians with user-friendly and effective tools for the study of miRNA-gene target interaction data and for the discovery of miRNA functions and mechanisms. Data in ComiRNet are produced by a combined computational approach based on: 1) a semi-supervised ensemble-based classifier, which learns to combine miRNA-gene target interactions (MTIs) from several prediction algorithms, and 2) the biclustering algorithm HOCCLUS2, which exploits the large set of produced predictions, with the associated probabilities, to identify overlapping and hierarchically organized biclusters that represent miRNA-gene regulatory networks (MGRNs). CONCLUSIONS: ComiRNet represents a valuable resource for elucidating the miRNAs' role in complex biological processes by exploiting data on their putative function in the context of MGRNs. ComiRnet currently stores about 5 million predicted MTIs between 934 human miRNAs and 30,875 mRNAs, as well as 15 bicluster hierarchies, each of which represents MGRNs at different levels of granularity. The database can be freely accessed at: http://comirnet.di.uniba.it.


Subject(s)
Algorithms , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Internet , MicroRNAs/genetics , RNA, Messenger/genetics , Humans
3.
BMC Bioinformatics ; 15 Suppl 1: S4, 2014.
Article in English | MEDLINE | ID: mdl-24564296

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferation, development, differentiation and cell homeostasis, as well as in many types of human tumors. To this aim, we have recently presented the biclustering method HOCCLUS2, for the discovery of miRNA regulatory networks. Experiments on predicted interactions revealed that the statistical and biological consistency of the obtained networks is negatively affected by the poor reliability of the output of miRNA target prediction algorithms. Recently, some learning approaches have been proposed to learn to combine the outputs of distinct prediction algorithms and improve their accuracy. However, the application of classical supervised learning algorithms presents two challenges: i) the presence of only positive examples in datasets of experimentally verified interactions and ii) unbalanced number of labeled and unlabeled examples. RESULTS: We present a learning algorithm that learns to combine the score returned by several prediction algorithms, by exploiting information conveyed by (only positively labeled/) validated and unlabeled examples of interactions. To face the two related challenges, we resort to a semi-supervised ensemble learning setting. Results obtained using miRTarBase as the set of labeled (positive) interactions and mirDIP as the set of unlabeled interactions show a significant improvement, over competitive approaches, in the quality of the predictions. This solution also improves the effectiveness of HOCCLUS2 in discovering biologically realistic miRNA:mRNA regulatory networks from large-scale prediction data. Using the miR-17-92 gene cluster family as a reference system and comparing results with previous experiments, we find a large increase in the number of significantly enriched biclusters in pathways, consistent with miR-17-92 functions. CONCLUSION: The proposed approach proves to be fundamental for the computational discovery of miRNA regulatory networks from large-scale predictions. This paves the way to the systematic application of HOCCLUS2 for a comprehensive reconstruction of all the possible multiple interactions established by miRNAs in regulating the expression of gene networks, which would be otherwise impossible to reconstruct by considering only experimentally validated interactions.


Subject(s)
Gene Regulatory Networks , MicroRNAs/genetics , Multigene Family , RNA, Messenger/genetics , Algorithms , Gene Expression Regulation , Humans , MicroRNAs/metabolism , RNA, Messenger/metabolism , Reproducibility of Results
4.
BMC Bioinformatics ; 14: 285, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24070402

ABSTRACT

BACKGROUND: Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. RESULTS: This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. CONCLUSIONS: Our newly developed method for HMC takes into account network information in the learning phase: When used for gene function prediction in the context of PPI networks, the explicit consideration of network autocorrelation increases the predictive performance of the learned models. Overall, we found that this holds for different gene features/ descriptions, functional annotation schemes, and PPI networks: Best results are achieved when the PPI network is dense and contains a large proportion of function-relevant interactions.


Subject(s)
Computational Biology/methods , Molecular Sequence Annotation/methods , Protein Interaction Maps/genetics , Algorithms , Artificial Intelligence , Databases, Genetic , Gene Ontology , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
BMC Bioinformatics ; 14 Suppl 7: S8, 2013.
Article in English | MEDLINE | ID: mdl-23815553

ABSTRACT

BACKGROUND: microRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target genes is necessary for the understanding of miRNAs' role in the control of cell life and death. In this paper we propose a novel data mining algorithm, called HOCCLUS2, specifically designed to bicluster miRNAs and target messenger RNAs (mRNAs) on the basis of their experimentally-verified and/or predicted interactions. Indeed, existing biclustering approaches, typically used to analyze gene expression data, fail when applied to miRNA:mRNA interactions since they usually do not extract possibly overlapping biclusters (miRNAs and their target genes may have multiple roles), extract a huge amount of biclusters (difficult to browse and rank on the basis of their importance) and work on similarities of feature values (do not limit the analysis to reliable interactions). RESULTS: To overcome these limitations, HOCCLUS2 i) extracts possibly overlapping biclusters, to catch multiple roles of both miRNAs and their target genes; ii) extracts hierarchically organized biclusters, to facilitate bicluster browsing and to distinguish between universe and pathway-specific miRNAs; iii) extracts highly cohesive biclusters, to consider only reliable interactions; iv) ranks biclusters according to the functional similarities, computed on the basis of Gene Ontology, to facilitate bicluster analysis. CONCLUSIONS: Our results show that HOCCLUS2 is a valid tool to support biologists in the identification of context-specific miRNAs regulatory modules and in the detection of possibly unknown miRNAs target genes. Indeed, results prove that HOCCLUS2 is able to extract cohesiveness-preserving biclusters, when compared with competitive approaches, and statistically confirm (at a confidence level of 99%) that mRNAs which belong to the same biclusters are, on average, more functionally similar than mRNAs which belong to different biclusters. Finally, the hierarchy of biclusters provides useful insights to understand the intrinsic hierarchical organization of miRNAs and their potential multiple interactions on target genes.


Subject(s)
Algorithms , Gene Expression Regulation , MicroRNAs/metabolism , RNA, Messenger/genetics , Animals , Humans , MicroRNAs/genetics
6.
BMC Bioinformatics ; 10 Suppl 6: S25, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19534751

ABSTRACT

BACKGROUND: Many studies report about detection and functional characterization of cis-regulatory motifs in untranslated regions (UTRs) of mRNAs but little is known about the nature and functional role of their distribution. To address this issue we have developed a computational approach based on the use of data mining techniques. The idea is that of mining frequent combinations of translation regulatory motifs, since their significant co-occurrences could reveal functional relationships important for the post-transcriptional control of gene expression. The experimentation has been focused on targeted mitochondrial transcripts to elucidate the role of translational control in mitochondrial biogenesis and function. RESULTS: The analysis is based on a two-stepped procedure using a sequential pattern mining algorithm. The first step searches for frequent patterns (FPs) of motifs without taking into account their spatial displacement. In the second step, frequent sequential patterns (FSPs) of spaced motifs are generated by taking into account the conservation of spacers between each ordered pair of co-occurring motifs. The algorithm makes no assumption on the relation among motifs and on the number of motifs involved in a pattern. Different FSPs can be found depending on different combinations of two parameters, i.e. the threshold of the minimum percentage of sequences supporting the pattern, and the granularity of spacer discretization. Results can be retrieved at the UTRminer web site: http://utrminer.ba.itb.cnr.it/. The discovered FPs of motifs amount to 216 in the overall dataset and to 140 in the human subset. For each FP, the system provides information on the discovered FSPs, if any. A variety of search options help users in browsing the web resource. The list of sequence IDs supporting each pattern can be used for the retrieval of information from the UTRminer database. CONCLUSION: Computational prediction of structural properties of regulatory sequences is not trivial. The presented data mining approach is able to overcome some limits observed in other competitive tools. Preliminary results on UTR sequences from nuclear transcripts targeting mitochondria are promising and lead us to be confident on the effectiveness of the approach for future developments.


Subject(s)
Computational Biology/methods , Untranslated Regions/genetics , Humans , Sequence Analysis, RNA/methods
7.
IEEE Trans Pattern Anal Mach Intell ; 26(5): 612-25, 2004 May.
Article in English | MEDLINE | ID: mdl-15460282

ABSTRACT

Model trees are an extension of regression trees that associate leaves with multiple regression models. In this paper, a method for the data-driven construction of model trees is presented, namely, the Stepwise Model Tree Induction (SMOTI) method. Its main characteristic is the induction of trees with two types of nodes: regression nodes, which perform only straight-line regression, and splitting nodes, which partition the feature space. The multiple linear model associated with each leaf is then built stepwise by combining straight-line regressions reported along the path from the root to the leaf. In this way, internal regression nodes contribute to the definition of multiple models and have a "global" effect, while straight-line regressions at leaves have only "local" effects. Experimental results on artificially generated data sets show that SMOTI outperforms two model tree induction systems, M5' and RETIS, in accuracy. Results on benchmark data sets used for studies on both regression and model trees show that SMOTI performs better than RETIS in accuracy, while it is not possible to draw statistically significant conclusions on the comparison with M5'. Model trees induced by SMOTI are generally simple and easily interpretable and their analysis often reveals interesting patterns.


Subject(s)
Algorithms , Artificial Intelligence , Decision Support Techniques , Information Storage and Retrieval/methods , Numerical Analysis, Computer-Assisted , Pattern Recognition, Automated , Cluster Analysis , Computer Simulation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...