Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671566

ABSTRACT

Programmed cell death (PCD) is a genetically controlled suicide process present in all living beings with the scope of eliminating cells unnecessary or detrimental for the proper development of the organism. In plants, PCD plays a pivotal role in many developmental processes such as sex determination, senescence, and aerenchyma formation and is involved in the defense responses against abiotic and biotic stresses. Thus, its study is a main goal for plant scientists. However, since PCD often occurs in a small group of inaccessible cells buried in a bulk of surrounding uninvolved cells, its study in whole plant or complex tissues is very difficult. Due to their uniformity, accessibility, and reproducibility of application of stress conditions, cultured cells appear a useful tool to investigate the different aspects of plant PCD. In this review, we summarize how plant cell cultures can be utilized to clarify the plant PCD process.


Subject(s)
Apoptosis/physiology , Cell Culture Techniques/methods , Plant Cells/physiology , Stress, Physiological/physiology
2.
Plants (Basel) ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478108

ABSTRACT

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO-) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO- scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO- in the FC-induced responses. In particular, ONOO- seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.

3.
Polymers (Basel) ; 11(5)2019 May 08.
Article in English | MEDLINE | ID: mdl-31072059

ABSTRACT

In recent years, the use of complex molecules based on the natural biopolymer chitin and/or on its deacetylated derivative chitosan has resulted in great advantages for many users. In particular, industries involved in the production of drugs, cosmetics, biotechnological items, and food have achieved better results using these particular molecules. In plants, chitin- and chitosan-based molecules are largely used as safe and environmental-friendly tools to ameliorate crop productivity and conservation of agronomic commodities. This review summarizes the results of the last two years on the application of chitin- and chitosan-based molecules on plant productivity. The open questions and future perspectives to overcome the present gaps and limitations are also discussed.

4.
Plants (Basel) ; 7(3)2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30103494

ABSTRACT

High temperatures are a significant stress factor for plants. In fact, many biochemical reactions involved in growth and development are sensitive to temperature. In particular, heat stress (HS) represents a severe issue for plant productivity and strategies to obtain high yields under this condition are important goals in agriculture. While selenium (Se) is a nutrient for humans and animals, its role as a plant micronutrient is still questioned. Se can prevent several abiotic stresses (drought, heat, UV, salinity, heavy metals), but the action mechanisms are poorly understood. Se seems to regulate reactive oxygen species (ROS) and to inhibit heavy metals transport. In addition, it has been demonstrated that Se is essential for a correct integrity of cell membranes and chloroplasts, especially the photosynthetic apparatus. Previous results showed that in tobacco (Nicotiana tabacum cv. Bright-Yellow 2) cultures HS (5 min at 50 °C) induced cell death with apoptotic features, accompanied by oxidative stress and changes in the levels of stress-related proteins. In this work we investigated the effect of Se on the responses induced by HS. The obtained results show that Se markedly reduces the effects of HS on cell vitality, cytoplasmic shrinkage, superoxide anion production, membrane lipids peroxidation, activity of caspase-3-like proteases, and the levels of some stress-related proteins (Hsp90, BiP, 14-3-3s, cytochrome c).

5.
Protoplasma ; 255(4): 1079-1087, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29411100

ABSTRACT

Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO-), the RNS species generated by the interaction between NO and O2-. In this work, the role of ONOO- on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO-. The obtained results suggest a potential role for ONOO- in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO- seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.


Subject(s)
Nicotiana/chemistry , Peroxynitrous Acid/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Cells, Cultured , Hot Temperature
6.
Polymers (Basel) ; 10(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-30966154

ABSTRACT

In recent years, the search for biological methods to avoid the application of chemical products in agriculture has led to investigating the use of biopolymers-based materials. Among the tested biomaterials, the best results were obtained from those based on the biopolymer chitosan (CHT). CHT, available in large quantities from the deacetylation of chitin, has multiple advantages: it is safe, inexpensive and can be easily associated with other compounds to achieve better performance. In this review, we have summarized the latest researches of the application of CHT on plant productivity, plant protection against the attack of pathogens and extension of the commercial life of detached fruits.

7.
Int J Mol Sci ; 17(7)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-27347928

ABSTRACT

Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity.


Subject(s)
Chitosan/pharmacology , Crops, Agricultural/drug effects , Agrochemicals/pharmacology , Crops, Agricultural/growth & development , Nanoparticles , Plant Physiological Phenomena/drug effects
8.
Int J Mol Sci ; 16(2): 3019-34, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25642757

ABSTRACT

Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.


Subject(s)
Acer/cytology , Apoptosis/drug effects , Chitosan/pharmacology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology , Benzoates/pharmacology , Caspase 3/metabolism , Cells, Cultured , Cytochromes c/metabolism , DNA Fragmentation/drug effects , Hydrogen Peroxide/metabolism , Imidazoles/pharmacology , Lipid Peroxidation/drug effects , Nitric Oxide/metabolism , Plant Cells/metabolism
9.
Protoplasma ; 249(1): 89-98, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21327845

ABSTRACT

Chitosan (CHT) is a natural, non-toxic, and inexpensive compound obtained by partial alkaline deacetylation of chitin, the main component of the exoskeleton of crustaceans and other arthropods. The unique physiological and biological properties of CHT make this polymer useful for a wide range of industries. In agriculture, CHT is used to control numerous pre- and postharvest diseases on various horticultural commodities. In recent years, much attention has been devoted to CHT as an elicitor of defense responses in plants, which include raising of cytosolic Ca(2+), activation of MAP kinases, callose apposition, oxidative burst, hypersensitive response, synthesis of abscisic acid, jasmonate, phytoalexins, and pathogenesis-related proteins. In this work, we investigated the effects of different CHT concentrations on some defense/stress responses of sycamore (Acer pseudoplatanus L.) cultured cells. CHT induced accumulation of dead cells, and of cells with fragmented DNA, production of H(2)O(2) and nitric oxide, release of cytochrome c from the mitochondrion, accumulation of regulative 14-3-3 proteins in the cytosol and of HSP70 molecular chaperone binding protein in the endoplasmic reticulum, accompanied by marked modifications in the architecture of this cell organelle.


Subject(s)
Acer/drug effects , Chitosan/pharmacology , Plant Cells/drug effects , Stress, Physiological , 14-3-3 Proteins/metabolism , Acer/cytology , Acer/immunology , Cell Death , Cell Survival , Cells, Cultured , Culture Media/metabolism , Cytochromes c/metabolism , Cytosol/metabolism , DNA Fragmentation , Electrophoresis, Polyacrylamide Gel , Endoplasmic Reticulum/metabolism , HSP70 Heat-Shock Proteins/metabolism , Hydrogen Peroxide/metabolism , In Situ Nick-End Labeling , Microscopy, Confocal , Mitochondria/metabolism , Nitric Oxide/metabolism , Plant Cells/immunology
10.
J Plant Physiol ; 167(17): 1442-7, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20630615

ABSTRACT

The phytohormone ethylene is involved in many physiological and developmental processes of plants, as well as in stress responses and in the development of disease resistance. Fusicoccin (FC) is a well-known phytotoxin, that in sycamore (Acer pseudoplatanus L.) cultured cells, induces a set of stress responses, including synthesis of ethylene. In this study, we investigated the possible involvement of ethylene in the FC-induced stress responses of sycamore cells by means of Co(2+), a well-known specific inhibitor of ethylene biosynthesis. Co(2+) inhibited the accumulation of dead cells in the culture, the production of nitric oxide (NO) and of the molecular chaperone Binding Protein (BiP) in the endoplasmic reticulum induced by FC. By contrast, Co(2+) was ineffective on the FC-induced accumulation of cells with fragmented DNA, production of H(2)O(2) and release of cytochrome c from the mitochondrion, and only partially reduced the accumulation of regulative 14-3-3 proteins in the cytosol. In addition, we compared the effect of FC on the above parameters with that of the ethylene-releasing compound ethephon (2-chloroethane phosphonic acid). The results suggest that ethylene is involved in several stress responses induced by FC in sycamore cells, including a form of cell death that does not show apoptotic features and possibly involves NO as a signaling molecule.


Subject(s)
Acer/cytology , Acer/metabolism , Ethylenes/metabolism , Glycosides/toxicity , Stress, Physiological/drug effects , 14-3-3 Proteins/metabolism , Acer/drug effects , Cell Death/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Cobalt/toxicity , Culture Media/metabolism , Cytochromes c/metabolism , Cytosol/drug effects , Cytosol/metabolism , DNA Fragmentation/drug effects , Hydrogen Peroxide/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide/metabolism , Organophosphorus Compounds/toxicity , Plant Proteins/metabolism
11.
Protoplasma ; 239(1-4): 23-30, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19876713

ABSTRACT

Temperature stress such as heat, cold, or freezing is a principal cause for yield reduction in crops. In particular, heat stress is very common and dangerous for plants since this stress can impact several plant and cellular functions. In spite of their role in sensing local stress and in controlling fundamental processes including PCD, the responses of cellular structures and organelles to heat stress are poorly investigated. In this work, we investigated the possible changes induced by mild heat stress, medium heat stress, and heat shock (HS; 5 min at 35 degrees C, 45 degrees C, or 50 degrees C, respectively) on actin cytoskeleton and endoplasmic reticulum (ER) of tobacco BY-2 cultured cells. While mild and medium heat stresses are ineffective, HS induces depolymerization of actin microfilaments and changes in ER morphology accompanied by accumulation of the HSP70 binding protein (BiP). These effects of HS are prevented by the inhibitor of ethylene production Co(2+). While the analyzed cell structures do not seem to be involved in the establishment of mild and medium heat stresses at least in this experimental system, the strong modifications induced by the treatment at 50 degrees C suggest that actin cytoskeleton and ER may be involved in the responses to HS. Besides, the inhibiting effect of Co(2+) suggests a role for ethylene as a regulative molecule in the responses to HS here observed.


Subject(s)
Actins/metabolism , Cobalt/metabolism , Cytoskeleton/metabolism , Endoplasmic Reticulum/metabolism , Hot Temperature , Nicotiana/metabolism , Stress, Physiological , Animals , Cell Survival/drug effects , Cells, Cultured , Cobalt/pharmacology , Nicotiana/cytology , Nicotiana/drug effects
12.
Physiol Plant ; 133(2): 449-57, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18346076

ABSTRACT

Programmed cell death (PCD) plays a vital role in plant development and is involved in defence mechanisms against biotic and abiotic stresses. Different forms of PCD have been described in plants on the basis of the cell organelle first involved. In sycamore (Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin (FC) induces cell death. However, only a fraction of the dead cells shows the typical hallmarks of animal apoptosis, including cell shrinkage, chromatin condensation, DNA fragmentation and release of cytochrome c from the mitochondrion. In this work, we show that the scavenging of nitric oxide (NO), produced in the presence of FC, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and rutin inhibits cell death without affecting DNA fragmentation and cytochrome c release. In addition, we show that FC induces a massive depolymerization of actin filaments that is prevented by the NO scavengers. Finally, the addition of actin-depolymerizing drugs induces PCD in control cells and overcomes the inhibiting effect of cPTIO on FC-induced cell death. Vice versa, the addition of actin-stabilizing drugs to FC-treated cells partially inhibits the phytotoxin-induced PCD. These results suggest that besides an apoptotic-like form of PCD involving the release of cytochrome c, FC induces at least another form of cell death, likely mediated by NO and independent of cytochrome c release, and they make it tempting to speculate that changes in actin cytoskeleton are involved in this form of PCD.


Subject(s)
Acer/cytology , Acer/drug effects , Actins/metabolism , Apoptosis/drug effects , Glycosides/pharmacology , Nitric Oxide/metabolism , Acer/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Benzoates/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Cytochalasin D/pharmacology , Cytochromes c/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , DNA Fragmentation/drug effects , Depsipeptides/pharmacology , Hydrogen Peroxide/metabolism , Imidazoles/pharmacology , Rutin/pharmacology
13.
Arch Biochem Biophys ; 453(1): 13-7, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16615933

ABSTRACT

The protective action of alpha-crystallin against copper-induced protein stress is studied using bovine lens aldose reductase (ALR2) as protein model. The oxidative inactivation of ALR2 induced by CuCl2 at the stoichiometric Cu2+/ALR2 ratio of 2/1 [I. Cecconi, M. Moroni, P.G. Vilardo, M. Dal Monte, P. Borella, G. Rastelli, L. Costantino, D. Garland, D. Carper, J.M. Petrash, A. Del Corso, U. Mura, Biochemistry 37 (1998) 14167-14174] is accompanied by protein aggregation phenomena when the metal ion concentration is increased (Cu2+/ALR2>3). Protein oxidation precedes protein precipitation. Both inactivation and precipitation of ALR2 are prevented by alpha-crystallin in a concentration-dependent manner. The rationale for the stabilization of ALR2 exerted by alpha-crystallin at low metal concentration is given on the basis of the ability of alpha-crystallin to chelate copper. However, the overall protective action exerted by alpha-crystallin at higher copper concentration may be explained invoking the contribution of the special features of alpha-crystallin to easily interact with target proteins undergoing structural rearrangement.


Subject(s)
Aldehyde Reductase/chemistry , Copper/chemistry , Lens, Crystalline/chemistry , Oxygen/chemistry , alpha-Crystallins/chemistry , Animals , Cattle , Enzyme Activation , In Vitro Techniques , Ions , Molecular Chaperones/chemistry , Oxidation-Reduction
14.
Physiol Plant ; 120(3): 386-394, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15032835

ABSTRACT

Fusicoccin (FC) is a well known toxin acting as a 14-3-3 protein-mediated activator of the plasma membrane H(+)-ATPase and the biochemical and physiological changes induced in the cell by this toxin have, up to now, been ascribed to the increased rate of proton extrusion by this pump leading to external acidification and cell hyperpolarization. In a recent work (Malerba M et al. 2003, Physiologia Plantarum, 119: 480-488) it was shown that, besides the previously well studied changes, FC induces a large stimulation of H(2)O(2) production, an activation of alternative respiration and a leakage of cytochrome c from mitochondria. In this article further studies on the relation between the H(2)O(2) overproduction and medium acidification are reported. The increase in the rate of H(2)O(2) accumulation is particularly evident when high concentrations of the toxin ensure a rapid acidification of the medium, but it is not obtained when the time-course of acidification is reproduced by external acid additions. The FC-dependent H(2)O(2) overproduction is strongly inhibited by inhibitors of the H(+)-ATPase activity, such as vanadate and erythrosin B, and it does not occur when the activation of the H(+)-ATPase is prevented by phenylarsine oxide (PAO), an inhibitor of the activating interaction between the enzyme and its regulative 14-3-3 protein. Interestingly, all these inhibitors only partially prevent the leakage of cytochrome c from the mitochondria. A kinetic analysis of FC-dependent changes of 14-3-3s shows that the initial increase in the plasma membrane level of these proteins, presumably due to translocation of free cytosolic forms, is followed by a remarkable increase in the level of the 14-3-3 proteins located in the cytosol. This latter change is not prevented by inhibitors of the activity or activation of the H(+)-ATPase. These results suggest that, besides the H(+)-ATPase activation, FC can induce other cell changes possibly mediated by changes of the regulative 14-3-3 proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...