Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 3025, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542260

ABSTRACT

Contactless measurement of heart rate variability (HRV), which reflects changes of the autonomic nervous system (ANS) and provides crucial information on the health status of a person, would provide great benefits for both patients and doctors during prevention and aftercare. However, gold standard devices to record the HRV, such as the electrocardiograph, have the common disadvantage that they need permanent skin contact with the patient. Being connected to a monitoring device by cable reduces the mobility, comfort, and compliance by patients. Here, we present a contactless approach using a 24 GHz Six-Port-based radar system and an LSTM network for radar heart sound segmentation. The best scores are obtained using a two-layer bidirectional LSTM architecture. To verify the performance of the proposed system not only in a static measurement scenario but also during a dynamic change of HRV parameters, a stimulation of the ANS through a cold pressor test is integrated in the study design. A total of 638 minutes of data is gathered from 25 test subjects and is analysed extensively. High F-scores of over 95% are achieved for heartbeat detection. HRV indices such as HF norm are extracted with relative errors around 5%. Our proposed approach is capable to perform contactless and convenient HRV monitoring and is therefore suitable for long-term recordings in clinical environments and home-care scenarios.


Subject(s)
Autonomic Nervous System/physiology , Heart Rate/physiology , Heart Sounds/physiology , Monitoring, Physiologic/methods , Adult , Autonomic Nervous System/diagnostic imaging , Electrocardiography/instrumentation , Female , Humans , Interferometry/instrumentation , Male , Monitoring, Physiologic/instrumentation , Radar/instrumentation
2.
Sci Data ; 7(1): 291, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901032

ABSTRACT

Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24 h of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24 GHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained.


Subject(s)
Monitoring, Ambulatory/instrumentation , Radar , Vital Signs , Algorithms , Autonomic Nervous System , Healthy Volunteers , Hemodynamics , Humans
3.
Adv Mater ; 32(20): e1905309, 2020 May.
Article in English | MEDLINE | ID: mdl-31943419

ABSTRACT

Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid-fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Peptides/genetics , Protein Engineering , Proteins/genetics , Static Electricity
4.
IEEE Trans Biomed Eng ; 67(3): 773-785, 2020 03.
Article in English | MEDLINE | ID: mdl-31180834

ABSTRACT

OBJECTIVE: Radar technology promises to be a touchless and thereby burden-free method for continuous heart sound monitoring, which can be used to detect cardiovascular diseases. However, the first and most crucial step is to differentiate between high- and low-quality segments in a recording to assess their suitability for a subsequent automated analysis. This paper gives a comprehensive study on this task and first addresses the specific characteristics of radar-recorded heart sound signals. METHODS: To gather heart sound signals recorded from radar, a bistatic radar system was built and installed at the university hospital. Under medical supervision, heart sound data were recorded from 30 healthy test subjects. The signals were segmented and labeled as high- or low-quality by a medical expert. Different state-of-the-art pattern classification algorithms were evaluated for the task of automated signal quality determination and the most promising one was optimized and evaluated using leave-one-subject-out cross validation. RESULTS: The proposed classifier is able to achieve an accuracy of up to 96.36% and demonstrates a superior classification performance compared with the state-of-the-art classifier with a maximum accuracy of 76.00%. CONCLUSION: This paper introduces an ensemble classifier that is able to perform automated signal quality determination of radar-recorded heart sound signals with a high accuracy. SIGNIFICANCE: Besides achieving a higher performance compared with state-of-the-art classifiers, this study is the first one to deal with the quality determination of heart sounds that are recorded by radar systems. The proposed method enables contactless and continuous heart sound monitoring for the detection of cardiovascular diseases.


Subject(s)
Heart Sounds/physiology , Monitoring, Physiologic/methods , Phonocardiography/methods , Radar/instrumentation , Signal Processing, Computer-Assisted , Adult , Algorithms , Electrocardiography , Equipment Design , Female , Humans , Male , Middle Aged , Phonocardiography/instrumentation , Young Adult
5.
Sensors (Basel) ; 19(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159218

ABSTRACT

Vital parameters are key indicators for the assessment of health. Conventional methods rely on direct contact with the patients' skin and can hence cause discomfort and reduce autonomy. This article presents a bistatic 24 GHz radar system based on an interferometric six-port architecture and features a precision of 1 µm in distance measurements. Placed at a distance of 40 cm in front of the human chest, it detects vibrations containing respiratory movements, pulse waves and heart sounds. For the extraction of the respiration rate, time-domain approaches like autocorrelation, peaksearch and zero crossing rate are compared to the Fourier transform, while template matching and a hidden semi-Markov model are utilized for the detection of the heart rate from sphygmograms and heart sounds. A medical study with 30 healthy volunteers was conducted to collect 5.5 h of data, where impedance cardiogram and electrocardiogram were used as gold standard for synchronously recording respiration and heart rate, respectively. A low root mean square error for the breathing rate (0.828 BrPM) and a high overall F1 score for heartbeat detection (93.14%) could be achieved using the proposed radar system and signal processing.


Subject(s)
Biosensing Techniques/methods , Algorithms , Cardiography, Impedance , Electrocardiography , Healthy Volunteers , Heart Rate/physiology , Humans , Markov Chains , Signal Processing, Computer-Assisted
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6677-6680, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947373

ABSTRACT

Sounds caused by the action of the heart reflect both its health as well as deficiencies and are examined by physicians since antiquity. Pathologies of the valves, e.g. insufficiencies and stenosis, cardiac effusion, arrhythmia, inflammation of the surrounding tissue and other diagnosis can be reached by experienced physicians. However, practice is needed to assess the findings correctly. Furthermore, stethoscopes do not allow for long-term monitoring of a patient. Recently, radar technology has shown the ability to perform continuous touchless and thereby burden-free heart sound measurements. In order to perform automated classification of the signals, the first and most important step is to segment the heart sounds into their physiological phases. This paper examines the use of different Long Short-Term Memory (LSTM) architectures for this purpose based on a large dataset of radar-recorded heart sounds gathered from 30 different test persons in a clinical study. The best-performing network, a bidirectional LSTM, achieves a sample-wise accuracy of 93.4 % and a F1 score for the first heart sound of 95.8 %.


Subject(s)
Heart Sounds , Stethoscopes , Arrhythmias, Cardiac , Heart , Humans , Radar
SELECTION OF CITATIONS
SEARCH DETAIL
...