Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Physiol Res ; 73(3): 481-484, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027962

ABSTRACT

Koletsky rats, the genetically obese strain of spontaneously hypertensive rats (SHROB), are the well-accepted animal model of human metabolic syndrome. They are characterized by early onset obesity, spontaneous hypertension, hyperinsulinemia, hyperlipidemia, proteinuria and shortened life-span. One of the factors in the pathogenesis of metabolic syndrome is oxidative stress. The aim of the present study was to compare two parameters related to oxidative stress: the levels of the main intracellular antioxidant, reduced glutathione as well as the indirect indicator of lipid peroxidation damage, thiobarbituric acid-reactive substances (TBARS) in heart, renal cortex and medulla and liver in male lean spontaneously hypertensive rats (SHR) and obese Koletsky rats. We did not find any significant differences in these markers in heart and kidneys. However, we found significantly lower glutathione level in Koletsky rat liver compared with SHR (5.03+/-0.23 vs. 5.83+/-0.14 µmol/g tissue, respectively). On the contrary, we observed significantly higher TBARS levels in Koletsky rat liver compared with SHR (28.56+/-2.15 vs. 21.83+/-1.60 nmol/mg protein, respectively). We conclude that the liver is the most sensitive tissue to oxidative damage with the significantly decreased concentration of glutathione and the significantly increased concentration of TBARS in obese Koletsky rats in comparison with lean control SHR.


Subject(s)
Glutathione , Lipid Peroxidation , Liver , Obesity , Oxidative Stress , Rats, Inbred SHR , Animals , Male , Glutathione/metabolism , Obesity/metabolism , Oxidative Stress/physiology , Rats , Liver/metabolism , Hypertension/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Kidney/metabolism , Myocardium/metabolism
2.
Physiol Res ; 72(5): 607-619, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38015760

ABSTRACT

Recent data suggest that the orexigenic peptide ghrelin and liver-expressed antimicrobial peptide 2 (LEAP2) have opposing effects on food intake regulation. Although circulating ghrelin is decreased in obesity, peripheral ghrelin administration does not induce food intake in obese mice. Limited information is available on ghrelin resistance in relation to LEAP2. In this study, the interplay between ghrelin and LEAP2 in obesity induced by a high-fat (HF) diet in mice was studied. First, the progression of obesity and intolerance to glucose together with plasma levels of active and total ghrelin, leptin, as well as liver LEAP2 mRNA expression at different time points of HF diet feeding was examined. In addition, the impact of switch from a HF diet to a standard diet on plasma ghrelin and LEAP2 production was studied. Second, sensitivity to the stable ghrelin analogue [Dpr3]Ghrelin or our novel LEAP2 analogue palm-LEAP2(1-14) during the progression of HF diet-induced obesity and after the switch for standard diet was investigated. Food intake was monitored after acute subcutaneous administration. HF diet feeding decreased both active and total plasma ghrelin and increased liver LEAP2 mRNA expression along with intolerance to glucose and the switch to a standard diet normalized liver LEAP2 mRNA expression and plasma level of active ghrelin, but not of total ghrelin. Additionally, our study demonstrates that a HF diet causes resistance to [Dpr3]Ghrelin, reversible by switch to St diet, followed by resistance to palm-LEAP2(1-14). Further studies are needed to determine the long-term effects of LEAP2 analogues on obesity-related ghrelin resistance.


Subject(s)
Diet, High-Fat , Ghrelin , Animals , Mice , Ghrelin/pharmacology , Glucose , Obesity/drug therapy , Receptors, Ghrelin , RNA, Messenger
3.
Physiol Res ; 72(Suppl 2): S73-S90, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37565414

ABSTRACT

The worldwide increase in the incidence of obesity and cardiovascular and neurodegenerative diseases, e.g. Alzheimer's disease, is related to many factors, including an unhealthy lifestyle and aging populations. However, the interconnection between these diseases is not entirely clear, and it is unknown whether common mechanisms underlie these conditions. Moreover, there are currently no fully effective therapies for obesity and neurodegeneration. While there has been extensive research in preclinical models addressing these issues, the experimental findings have not been translated to the clinic. Another challenge relates to the time of onset of individual diseases, which may not be easily identified, since there are no specific indicators or biomarkers that define disease onset. Hence knowing when to commence preventive treatment is unclear. This is especially pertinent in neurodegenerative diseases, where the onset of the disease may be subtle and occur decades before the signs and symptoms manifest. In metabolic and cardiovascular disorders, the risk may occur in-utero, in line with the concept of fetal programming. This review provides a brief overview of the link between obesity, cardiovascular and neurodegenerative diseases and discusses potential common mechanisms including the role of the gut microbiome.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Alzheimer Disease/metabolism , Obesity/complications , Obesity/diagnosis , Obesity/epidemiology
4.
Physiol Res ; 70(4): 579-590, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34062082

ABSTRACT

Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.


Subject(s)
Appetite Depressants/administration & dosage , Cholecystokinin/metabolism , Eating/drug effects , Feeding Behavior/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Prolactin-Releasing Hormone/analogs & derivatives , Solitary Nucleus/drug effects , Animals , Chemokines, CC/drug effects , Chemokines, CC/metabolism , Devazepide/administration & dosage , Fasting , Hormone Antagonists/administration & dosage , Injections, Intraperitoneal , Injections, Subcutaneous , Male , Mice, Inbred C57BL , Paraventricular Hypothalamic Nucleus/metabolism , Peptide Fragments/administration & dosage , Prolactin-Releasing Hormone/administration & dosage , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction , Sincalide/administration & dosage , Sincalide/analogs & derivatives , Solitary Nucleus/metabolism
5.
Physiol Res ; 67(2): 339-346, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29303606

ABSTRACT

Neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are increasing in prevalence. Currently, there are no effective and specific treatments for these disorders. Recently, positive effects of the orexigenic hormone ghrelin on memory and learning were demonstrated in mouse models of AD and PD. In this study, we tested the potential neuroprotective properties of a stable and long-lasting ghrelin analog, Dpr(3)ghrelin (Dpr(3)ghr), in SH-SY5Y neuroblastoma cells stressed with 1.2 mM methylglyoxal (MG), a toxic endogenous by-product of glycolysis, and we examined the impact of Dpr(3)ghr on apoptosis. Pre-treatment with both 10(-5) and 10(-7) M Dpr(3)ghr resulted in increased viability in SH-SY5Y cells (determined by MTT staining), as well as reduced cytotoxicity of MG in these cells (determined by LDH assay). Dpr(3)ghr increased viability by altering pro-apoptotic and viability markers: Bax was decreased, Bcl-2 was increased, and the Bax/Bcl-2 ratio was attenuated. The ghrelin receptor GHS-R1 and Dpr(3)ghr-induced activation of PBK/Akt were immuno-detected in SH-SY5Y cells to demonstrate the presence of GHS-R1 and GHS-R1 activation, respectively. We demonstrated that Dpr(3)ghr protected SH-SY5Y cells against MG-induced neurotoxicity and apoptosis. Our data suggest that stable ghrelin analogs may be candidates for the effective treatment of neurodegenerative disorders.


Subject(s)
Apoptosis/drug effects , Ghrelin/analogs & derivatives , Ghrelin/pharmacology , Neuroprotective Agents/pharmacology , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Glycolysis/drug effects , Humans , L-Lactate Dehydrogenase/metabolism , MAP Kinase Signaling System/drug effects , Membrane Potential, Mitochondrial/drug effects , Neurotoxicity Syndromes/prevention & control , Pyruvaldehyde/toxicity , Receptors, Ghrelin/biosynthesis
6.
Mol Cell Endocrinol ; 436: 78-92, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27450151

ABSTRACT

Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.


Subject(s)
Cardiovascular System/metabolism , Eating , Peptides/metabolism , Animals , Hormones/metabolism , Humans , Models, Biological
7.
J Physiol Pharmacol ; 67(1): 121-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27010901

ABSTRACT

Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide expressed in the brain where it regulates food intake and energy expenditure. The C-terminal Arg-Phe-NH2 of PrRP is crucial for its biological activity. In our previous study, we showed that PrRP analogs myristoylated or palmitoylated at the N- terminus seem to cross the blood-brain barrier and lower food intake following peripheral administration. In this study, myristoylated and palmitoylated PrRP31 analogs with a modified C-terminal Phe were designed and tested. Lipidized analogs containing Phe(31) replaced by aromatic non-coded amino acids or tyrosine revealed high binding affinity to rat pituitary RC-4B/C cells with endogenous PrRP and neuropeptide FF 2 receptors and to CHO-K1 cells overexpressing either PrRP or neuropeptide FF 2 receptors. The analogs also showed strong agonistic properties at the GPR10 receptor using the beta-lactamase reporter gene assay. Moreover, lipidized PrRP analogs, especially those that were palmitoylated, demonstrated strong and long-lasting anorexigenic effects in fasted mice after subcutaneous administration. The most efficient PrRP31 analogs with PheCl2(31), either palmitoylated or myristoylated at the N-terminus, are promising candidates for the study of food disorders, possibly for anti-obesity treatment. Despite the therapeutic potential in targeting central GPR10, the endogenous ligand PrRP cannot cross the blood-brain barrier. Understanding biological activity and transport of novel structural analogs of PrRP with a potential central anorexigenic effect is of key therapeutic significance.


Subject(s)
Neuropeptides/pharmacology , Prolactin-Releasing Hormone/analogs & derivatives , Prolactin-Releasing Hormone/pharmacology , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , CHO Cells , Cell Line , Cricetulus , Eating/drug effects , Humans , Lipids , Male , Mice , Mice, Inbred C57BL , Neuropeptides/metabolism , Obesity/drug therapy , Obesity/metabolism , Prolactin-Releasing Hormone/metabolism , Rats , Receptors, Neuropeptide/metabolism
8.
Physiol Res ; 64(5): 611-20, 2015.
Article in English | MEDLINE | ID: mdl-26680230

ABSTRACT

The incidence of metabolic syndrome increases in the developed countries, therefore biomedical research is focused on the understanding of its etiology. The study of exact mechanisms is very complicated because both genetic and environmental factors contribute to this complex disease. The ability of environmental factors to promote phenotype changes by epigenetic DNA modifications (i.e. DNA methylation, histone modifications) was demonstrated to play an important role in the development and predisposition to particular symptoms of metabolic syndrome. There is no doubt that the early life, such as the fetal and perinatal periods, is critical for metabolic syndrome development and therefore critical for prevention of this disease. Moreover, these changes are visible not only in individuals exposed to environmental factors but also in the subsequent progeny for multiple generations and this phenomenon is called transgenerational inheritance. The knowledge of molecular mechanisms, by which early minor environmental stimuli modify the expression of genetic information, might be the desired key for the understanding of mechanisms leading to the change of phenotype in adulthood. This review provides a short overview of metabolic syndrome epigenetics.


Subject(s)
Epigenesis, Genetic/genetics , Inheritance Patterns/genetics , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Animals , Disease Susceptibility/metabolism , Humans
9.
Int J Obes (Lond) ; 39(6): 986-93, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25771926

ABSTRACT

OBJECTIVES: Obesity is a frequent metabolic disorder but an effective therapy is still scarce. Anorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity but are ineffective after peripheral application. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice. RESULTS: Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF-2 receptor. Peripheral administration of myristoylated and palmitoylated PrRP analogs to fasted mice induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight and improved metabolic parameters, and attenuated lipogenesis in mice with diet-induced obesity. CONCLUSIONS: Our data suggest that the lipidization of PrRP enhances stability and mediates its effect in central nervous system. Strong anorexigenic and body-weight-reducing effects make lipidized PrRP an attractive candidate for anti-obesity treatment.


Subject(s)
Anti-Obesity Agents/pharmacology , Lipids/chemistry , Obesity/prevention & control , Prolactin-Releasing Hormone/pharmacology , Animals , Appetite Regulation , Eating , Energy Metabolism , Half-Life , Male , Mice , Mice, Inbred C57BL , Prolactin-Releasing Hormone/analogs & derivatives , Signal Transduction
10.
J Physiol Pharmacol ; 65(4): 477-86, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25179080

ABSTRACT

Catecholamines participate in the food intake regulation, however, there are no literature data available, dealing with the activity of tyrosine hydroxylase (TH) neurons in response to stimulation or inhibition of GHS-R (growth hormone secretagogue receptor) in the hypothalamic arcuate nucleus (ARC). The present study was focused to reveal whether [Dpr(N-octanoyl) 3ghrelin], a stable GHS-R agonist, itself in doses of 5 or 10 mg/kg (s.c.) or in combination with GHS-R receptor antagonist ([DLys3]GHRP-6) in dose of 10 mg/kg (s.c.), may affect the activity of ARC TH-containing neurons in C57BL/6 male mice fed either with standard (SD) or high fat diet (HFD) that developed a diet-induced obesity (DIO). The data of the present study clearly indicate that both doses of GHS-R agonist stimulated food intake in SD mice and GHS-R antagonist significantly reduced GHS-R agonist orexinergic effect in SD mice and suppressed the voluntary food intake in HFD mice. Both doses of the GHS-R agonist stimulated Fos expression in ARC neurons in both diet groups of mice which was not abolished by GHS-R antagonist pretreatment. Moreover, both doses of the GHS-R agonist significantly influenced the activation of TH neurons in the ARC of SD mice. The GHS-R antagonist also significantly increased TH neurons activation after GHS-R agonist although this effect was less powerful in HFD mice. This is the first study demonstrating response of local ARC TH neurons to peripherally applied GHS-R agonist and antagonist. The present data point out that the response of TH neurons to GHS-R agonist and antagonist is different in normal and DIO mice and extend our knowledge about the further ARC neuronal phenotype responding to peripheral ghrelin. To bring insight into the understanding of the functional significance of the activated TH neurons in ARC, in the context of the ghrelin peripheral increase, further studies are required.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Diet, High-Fat , Receptors, Ghrelin/agonists , Receptors, Ghrelin/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Male , Mice, Inbred C57BL , Neurons/drug effects , Peptides/pharmacology , Proto-Oncogene Proteins c-fos/metabolism
11.
Physiol Res ; 63(4): 483-90, 2014.
Article in English | MEDLINE | ID: mdl-24908095

ABSTRACT

Patients with obesity and type 2 diabetes often display high levels of the anti-diabetic factor fibroblast growth factor-21 (FGF21), suggesting that the overproduction of FGF21 may result from increased adiposity in an attempt by white adipose tissue (WAT) to counteract insulin resistance. However, the production of FGF21 diabetes in the absence of WAT has not been examined. In this study, we investigated the effects of lipodystrophy in A-ZIP F-1 mice on FGF21 production in relation to diabetes. A-ZIP F-1 mice displayed high FGF21 plasma levels resulting from enhanced FGF21 mRNA expression in the liver. Concomitant enhancement of FGF21 receptor (FGFR1) and glucose transporter 1 (GLUT-1) mRNA expression was observed in the muscles of A-ZIP F-1 mice. Furthermore, the activation of hypothalamic NPY and AgRP mRNA expression positively correlated with plasma levels of FGF21 but not active ghrelin. Our study demonstrates that an increased FGF21 plasma level in lipodystrophic A-ZIP F-1 mice results mainly from up-regulated liver production but does not suffice to overcome the lipodystrophy-induced severe type 2-diabetes and insulin resistance in the liver linked to the augmented liver fat deposition.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Fibroblast Growth Factors/metabolism , Insulin Resistance , Lipodystrophy/metabolism , Liver/metabolism , RNA, Messenger/biosynthesis , Adipose Tissue, Brown/metabolism , Animals , Fibroblast Growth Factors/biosynthesis , Fibroblast Growth Factors/blood , Hypothalamus/metabolism , Mice , Neuropeptides/metabolism , Pancreas/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Spleen/metabolism
12.
Mol Cell Endocrinol ; 393(1-2): 120-8, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24953973

ABSTRACT

The only peripherally released orexigenic hormone, ghrelin, plays a key role in food intake and body weight regulation. Antagonizing the ghrelin receptor, GHS-R1a, represents a promising approach for anti-obesity therapy. In our study, two novel GHS-R1a antagonists JMV4208 and JMV3002, which are trisubstituted 1,2,4-triazoles, decreased food intake in fasted lean mice in a dose-dependent manner, with ED50 values of 5.25 and 2.05 mg/kg, respectively. Both compounds were stable in mouse blood, with half-lives of 90 min (JMV4208) and 60 min (JMV3002), and disappeared from the blood 8h after administration. Fourteen days of treatment with the ghrelin antagonists (20 mg/kg twice a day) decreased food intake, body weight and adipose tissue mass in mice with diet-induced obesity (DIO). These results are likely attributable to an impact on food intake reduction and an attenuated expression of the lipogenesis-promoting enzymes (acetyl-CoA carboxylase 1 in subcutaneous fat and fatty acid synthase in subcutaneous and intraperitoneal fat). The decrease in fat mass negatively impacted circulating leptin levels. These data suggest that JMV4208 and JMV3002 could be useful therapeutic agents for the treatment of obesity.


Subject(s)
Adipose Tissue/drug effects , Body Weight/drug effects , Eating/drug effects , Picolinic Acids/pharmacology , Receptors, Ghrelin/antagonists & inhibitors , Triazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Picolinic Acids/chemistry , Triazoles/chemistry
13.
Physiol Res ; 62(4): 435-44, 2013.
Article in English | MEDLINE | ID: mdl-23590608

ABSTRACT

Ghrelin and agonists of its receptor GHS-R1a are potential substances for the treatment of cachexia. In the present study, we investigated the acute and long term effects of the GHS R1a agonist JMV 1843 (H Aib-DTrp-D-gTrp-CHO) on food intake, body weight and metabolic parameters in lean C57BL/6 male mice. Additionally, we examined stability of JMV 1843 in mouse blood serum. A single subcutaneous injection of JMV 1843 (0.01-10 mg/kg) increased food intake in fed mice in a dose-dependent manner, up to 5-times relative to the saline-treated group (ED(50)=1.94 mg/kg at 250 min). JMV 1843 was stable in mouse serum in vitro for 24 h, but was mostly eliminated from mouse blood after 2 h in vivo. Ten days of treatment with JMV 1843 (subcutaneous administration, 10 or 20 mg/kg/day) significantly increased food intake, body weight and mRNA expression of the orexigenic neuropeptide Y and agouti-related peptide in the medial basal hypothalamus and decreased the expression of uncoupling protein 1 in brown adipose tissue. Our data suggest that JMV 1843 could have possible future uses in the treatment of cachexia.


Subject(s)
Agouti-Related Protein/metabolism , Appetite Stimulants/pharmacology , Eating/drug effects , Ghrelin/agonists , Hypothalamus/drug effects , Neuropeptide Y/metabolism , Oligopeptides/pharmacology , Weight Gain/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Agouti-Related Protein/genetics , Animals , Appetite Stimulants/administration & dosage , Appetite Stimulants/pharmacokinetics , Dose-Response Relationship, Drug , Ghrelin/metabolism , Hypothalamus/metabolism , Indoles , Injections, Subcutaneous , Ion Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Neuropeptide Y/genetics , Oligopeptides/administration & dosage , Oligopeptides/pharmacokinetics , RNA, Messenger/metabolism , Receptors, Ghrelin/agonists , Receptors, Ghrelin/metabolism , Signal Transduction/drug effects , Tryptophan/analogs & derivatives , Uncoupling Protein 1 , Up-Regulation
14.
Neurochem Int ; 59(6): 889-95, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21843570

ABSTRACT

Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.


Subject(s)
Appetite Regulation/drug effects , Appetite Regulation/physiology , Brain Chemistry/drug effects , Ghrelin/agonists , Ghrelin/physiology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/biosynthesis , Up-Regulation/drug effects , Animals , Biomarkers/metabolism , Brain Chemistry/physiology , Feeding and Eating Disorders/drug therapy , Feeding and Eating Disorders/physiopathology , Ghrelin/analogs & derivatives , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Up-Regulation/physiology
15.
Mol Cell Endocrinol ; 343(1-2): 55-62, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21704671

ABSTRACT

It was demonstrated that estrogen deficiency and consuming high fat (HF) diet enhanced orexigenic activity of ghrelin. Therefore, we hypothesized that antagonizing of ghrelin action would attenuate food intake and body weight in mice obese both from ovariectomy (OVX) and feeding a HF diet. Ghrelin receptor antagonist [D-Lys(3)]GHRP-6 after seven days of subcutaneous treatment markedly decreased food intake in OVX mice fed both HF and standard diets; furthermore, it reduced body weight and blood glucose, insulin and leptin, and increased ß-hydroxybutyrate level and uncoupling-protein-1 mRNA in brown adipose tissue. Pair-feeding revealed that effect of [D-Lys(3)]GHRP-6 was primary anorexigenic. Estrogen supplementation reduced anorexigenic effects of [D-Lys(3)]GHRP-6. OVX [D-Lys(3)]GHRP-6 treatment in mice on HF diet resulted in markedly increased circulating level and liver expression of a major metabolic regulator, fibroblast growth factor 21. Our data suggest that ghrelin antagonists could be especially beneficial in individuals with common obesity combined with estrogen deficiency.


Subject(s)
Adiposity/drug effects , Diet, High-Fat , Models, Animal , Obesity/physiopathology , Oligopeptides/pharmacology , Postmenopause/metabolism , Receptors, Ghrelin/antagonists & inhibitors , Adipose Tissue, Brown/metabolism , Animals , Behavior, Animal/drug effects , Body Weight/drug effects , Eating/drug effects , Estrogens/administration & dosage , Estrogens/deficiency , Female , Ghrelin/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Ion Channels/genetics , Ion Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Motor Activity/drug effects , Ovariectomy , PPAR alpha/genetics , PPAR alpha/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Uncoupling Protein 1
16.
Horm Metab Res ; 42(3): 182-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20049675

ABSTRACT

Ovariectomized mice on a high fat diet represent a model of diet-induced obesity during estrogen deficiency. Here, we tested the hypothesis that sensitivity to centrally administered leptin in ovariectomized mice with diet-induced obesity could be restored by estrogen supplementation. Ovariectomized C57BL/6 female mice were fed either a standard or high fat diet until they were 27 weeks old. Ovariectomized mice on a high fat diet developed extreme obesity and hyperleptinemia and moderate hyperinsulinemia compared to those on a standard diet. For the last 4 weeks, 17beta-estradiol-3-benzoate or its vehicle was administered subcutaneously in a 4-day cyclic regimen. Finally, leptin or saline was injected into the third ventricle, and food intake and body weight were measured for 36 h. In ovariectomized mice fed a standard diet, the decrease in food intake and body weight was significant and was pronounced in 17beta-estradiol-3-benzoate-supplemented mice. The response to centrally injected leptin in ovariectomized mice on a high fat diet was insignificant, whereas in 17beta-estradiol-3-benzoate-supplemented mice, the effect was significant, particularly with respect to body weight. We showed for the first time that central insensitivity to leptin in ovariectomized diet-induced obese mice was restored with 17beta-estradiol-3-benzoate supplementation, which also attenuated most of the parameters of metabolic syndrome. Only circulating adiponectin, a peripheral insulin sensitivity marker, was lowered following 17beta-estradiol-3-benzoate administration in both high fat and standard diet-fed ovariectomized mice, despite of decreased or unchanged glycemia, respectively.


Subject(s)
Diet , Dietary Fats/pharmacology , Dietary Supplements , Estradiol/pharmacology , Leptin/pharmacology , Ovariectomy , Animals , Body Weight/drug effects , Dietary Fats/administration & dosage , Estradiol/administration & dosage , Feeding Behavior/drug effects , Female , Leptin/administration & dosage , Mice , Mice, Inbred C57BL , Obesity/metabolism , Weight Gain/drug effects
17.
Physiol Res ; 58(5): 717-723, 2009.
Article in English | MEDLINE | ID: mdl-19093718

ABSTRACT

Monosodium glutamate (MSG) treatment of neonatal mice results in a selective damage to the arcuate nucleus (ARC) and development of obesity with increased adiposity at sustained body weight in the adulthood. Feeding pattern of the MSG obese mice is unusual. Our previous results showed that after 24-h fasting, MSG mice consumed negligible amount of food in several hours and therefore, it was impossible to register the effect of peptides attenuating food intake such as cholecystokinin (CCK) or cocaine- and amphetamine-regulated transcript (CART) peptide. To overcome this problem, two findings were used: firstly, orexigenic effect of neuropeptide Y (NPY) was attenuated both by CCK or CART peptide in lean fed mice and secondly, orexigenic effect of NPY was preserved in fed rats with MSG obesity. In this study, short-term food intake in fed lean and MSG obese C57BL/6 male mice was measured after simultaneous central administration of orexigenic NPY with either CART peptide or peripherally administered CCK. Anorexigenic action of exogenous CART peptide was preserved in MSG obese mice. On the other hand, satiety effect of exogenous CCK was completely lost in MSG obese mice. In conclusion, effective leptin signaling in ARC is necessary for satiety effect of CCK.


Subject(s)
Appetite Regulation , Arcuate Nucleus of Hypothalamus/physiology , Cholecystokinin/physiology , Nerve Tissue Proteins/physiology , Obesity/physiopathology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neuropeptide Y/physiology , Obesity/chemically induced , Sodium Glutamate
18.
Physiol Res ; 57(5): 727-734, 2008.
Article in English | MEDLINE | ID: mdl-17949248

ABSTRACT

In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiopathology , Obesity/physiopathology , Adiposity , Age Factors , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/metabolism , Blood Glucose/metabolism , Body Weight , Dietary Fats , Disease Models, Animal , Disease Susceptibility , Eating , Female , Insulin/blood , Insulin Resistance , Leptin/blood , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Phenotype , Sodium Glutamate , Species Specificity
19.
J Pept Res ; 58(3): 263-73, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11576333

ABSTRACT

Six [Pen(6)]oxytocin analogs were synthesized by substituting penicillamine for cysteine in oxytocin, [Mpa(1)]oxytocin, [dPen(1)]oxytocin, [5-t-BuPro(7)]oxytocin, [Mpa(1), 5-t-BuPro(7)]oxytocin and [dPen(1), 5-t-BuPro(7)]oxytocin. When tested in the uterotonic test in vitro [Pen(6)]oxytocin, [Pen(6), 5-t-BuPro(7)]oxytocin, [Mpa(1), Pen(6)]oxytocin and [Mpa(1), Pen(6), 5-t-BuPro(7)]oxytocin, all were found to possess both agonistic and antagonistic properties. Their agonistic potency ranged from negligible (0.08 IU/mg) to low (5.85 IU/mg) and their antagonistic potency (pA2) was estimated to range from 6.6 to 7.9. [dPen(1), Pen(6)]Oxytocin and [dPen(1), Pen(6), 5-t-BuPro(7)]oxytocin were found to be pure antagonists with similarly high pA2 values of approximately 8.2. Replacement of proline by 5-tert-butylproline increased binding affinity by a factor of two in [Pen(6)]oxytocin and had no influence on the binding affinity of [Mpa(1), Pen(6)]oxytocin and [dPen(1), Pen(6)]oxytocin. Assignment of the proton signals for prolyl amide cis- and trans-isomers by NMR experiments in water indicated that the Pen(6)-5-tert-BuPro(7) peptide bond cis-isomer population was augmented relative to the prolyl peptides and measured, respectively, at 20, 35 and 35% in the 5-tert-butylproline(7) analogs of [Pen(6)]oxytocin, [Mpa(1), Pen(6)]oxytocin and [dPen(1), Pen(6)]oxytocin. This augmentation in cis-isomer population was correlated with a 21-fold reduction in the agonistic potency and 2-fold augmentation in antagonistic potency for [Pen(6), 5-t-BuPro(7)]oxytocin relative to [Pen(6)]oxytocin. Augmentation of cis-isomer population was also correlated to reduced agonist potency without effect on antagonism on conversion of [Mpa(1), Pen(6)]oxytocin to [Mpa(1), Pen(6), 5-t-BuPro(7)]oxytocin. In the potent oxytocin antagonist, [dPen(1), Pen(6)]oxytocin, substitution of 5-tert-butylproline for proline augmented the cis-isomer population without affecting antagonistic potency. The synthesis and evaluation of [Pen(6)]oxytocin and [Pen(6), 5-t-BuPro(7)]oxytocin analogs 1-6 indicated that steric interactions influenced agonist and antagonist activity by modifying peptide conformation. Augmentations in the prolyl cis-isomer population caused by 5-tert-butylproline occurred concurrently with enhanced or maintained antagonistic potency and binding affinity and reduced agonistic potency.


Subject(s)
Oxytocin/analogs & derivatives , Oxytocin/chemistry , Penicillamine/chemistry , Proline/analogs & derivatives , Proline/chemistry , Animals , Female , Molecular Conformation , Oxytocin/pharmacology , Penicillamine/analogs & derivatives , Rats , Stereoisomerism , Structure-Activity Relationship , Uterus/drug effects
20.
J Pept Sci ; 7(8): 413-24, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11548057

ABSTRACT

For the purpose of evaluating substitution effects in the ortho, meta or para positions of the aromatic ring of tyrosine or phenylalanine in position 2 of oxytocin on uterotonic activity in vitro in the presence and absence of magnesium ions, six new analogues of oxytocin ([D- and L-m-methylphenylalanine2]oxytocin, [D- and L-m-methoxyphenylalanine2]oxytocin and [D- and L-o-methyltyrosine2]-oxytocin) were synthesized and several previously described analogues resynthesized. For the phenylalanine series, it is found that, in the absence of magnesium ions, substitution of the ortho and meta positions leads to loss of intrinsic activity (the analogues are antagonists) in contrast to the para position. In the tyrosine series, only methyl substitution in the meta position has this effect (substitution of ortho position only attenuates the agonistic biological activity). Addition of Mg ions restores to a certain degree the agonistic activity in the case of the o-methylphenylalanine analogue and enhances the agonistic activity of o-methyltyrosine oxytocin. All other analogues keep the original qualities as in the absence of Mg. Molecular modelling calculations of the structure of the above analogues was carried out to help explain these findings of the molecular level.


Subject(s)
Magnesium/chemistry , Oxytocin/analogs & derivatives , Amino Acid Sequence , Amino Acids/chemistry , Chromatography, Thin Layer , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Ions , Molecular Sequence Data , Oxytocin/chemistry , Oxytocin/pharmacology , Peptides/chemistry , Phenylalanine/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...