Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37653890

ABSTRACT

Metal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains Serratia sp. FV34b and Pseudomonas sp. ASe42b isolated from multi-metal and drought stressed sites showed multiple plant-growth-promoting attributes (phosphate solubilization, indole-3-acetic acid, siderophore, and ammonia production). Both strains were able to tolerate a high concentration of Cd along with being resistant to drought (-0.05 to -0.73 MPa). The seldom studied biomass of Amaranthus caudatus L. was used for biochar preparation by pyrolyzing it at 470 °C for 160 min under limited oxygen and then using it for the preparation of biochar-based microbial cell composites (BMC)s. To check the efficiency of BMC under Cd stress (21 mg kg-1 soil) and drought, a pot-scale study was conducted using Brassica napus L. for 47 days. Both the BMC5 (Biochar + Serratia sp. FV43b) and BMC9 (Biochar + Pseudomonas sp. ASe42b) improved the seed germination, plant biometrical (shoot and root biomass, length of organs) and physiological (photosynthetic pigments, proline, malondialdehyde, and relative water content) parameters under drought (exerted until it reaches up to 50% of field capacity) and Cd-spiked soil. However, for most of them, no or few significant differences were observed for BMC9 before and after drought. Moreover, BMC9 maximized the Cd accumulation in root and meager transfer to shoot, making it a best bioformulation for sustainable bioremediation of Cd and drought stressed soils using rapeseed plant.

2.
Article in English | MEDLINE | ID: mdl-36862298

ABSTRACT

The present study of phytomitigation potential and adaptive physiological and biochemical responses of helophyte Typha latifolia L. growing in water bodies at different distances from the century-old copper smelter (JSC "Karabashmed" Chelyabinsk Region, Russia) was conducted for the first time. This enterprise is one of the most dominant sources of multi-metal contamination for water and land ecosystems. The aim of the research was to assess the heavy metal (Cu, Ni, Zn, Pb, Cd, Mn, and Fe) accumulation, the photosynthetic pigment complex, and some redox reactions in T. latifolia from six differently technogenic impacted sites. In addition, the quantity of mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM) in rhizosphere sediments, as well as some plant growth-promoting (PGP) attributes of 50 isolates from each site, were determined. The water and sediment metal concentrations in highly contaminated sites exceeded the permissible/critical limits and were found much higher than that previously reported by other researchers while studying this helophyte. Both the degree of contamination and geoaccumulation indexes further elucidated extremely high contamination due to prolonged activity of copper smelter. T. latifolia accumulated significantly higher concentrations of the most of studied metals in its roost and rhizome with meager transfer to leaves (the translocation factors were less than one). Spearman's rank correlation coefficient showed a strong positive correlation between the metal concentration in sediments and its content in T. latifolia leaves (rs = 0.786 at p < 0.001 on average) and roots/rhizome (rs = 0.847 at p < 0.001 on average). In highly contaminated sites, the folia content of chlorophyll a and carotenoids decreased (by 30 and 38%, respectively), while lipid peroxidation enhanced (by 42%) on average compared to S1-S3 sites. These responses were accompanied by increasing non-enzymatic antioxidant content (soluble phenolic compounds, free proline, and soluble thiols) that allow plants to resist under significant anthropogenic loads. QMAFAnM in the five studied rhizosphere substrates varied insignificantly (2.5 × 106 - 3.8 × 107 cfu g-1 DW) and was decreased only in the most contaminated site (4.5 × 105). The proportion of rhizobacteria capable of fixing atmospheric nitrogen decreased by 1.7 times, solubilizing phosphates by 1.5 times, and synthesizing indol-3-acetic acid by 1.4 times in highly contaminated sites, while the amount of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and HCN producing bacteria did not considerably change. The results indicate high resistance of T. latifolia to prolonged technogenic impact, probably due to compensatory adaptive changes in the nonenzymatic antioxidant level and presence of beneficial microorganisms. Thus, T. latifolia was found to be a promising metal-tolerant helophyte that could help in mitigation of metal toxicity due to their phytostabilization even in heavily contaminated environment.

3.
Microorganisms ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363756

ABSTRACT

Metal tolerant plant growth-promoting (PGP) rhizobacteria are promising for enhancing plant productivity under copper (Cu) stress. Present pot scale experiment was conducted on Brassica napus L. to check the efficiency of rhizobacteria isolated from the rhizosphere of Tussilago farfara L. growing on Cu-contaminated soils. Out of fifty Cu tolerant strains, three isolates which showed multiple PGP traits such as indole-3-acetic acid (IAA) synthesis, phosphate (PS) solubilization, siderophore and ammonia production were identified preliminarily by morphological and physiological characteristics followed by 16S rRNA gene sequencing. The best Bacillus altitudinis strain TF16a which showed IAA: 15.5 mg L-1, PS: 215 mg L-1, siderophore halo zone ratio of 3.0 with high ammonia production was selected to prepare a biochar-based biofertilizer (BF). Seedling test showed maximum growth of B. napus shoot and root in presence of 5% of BF and this concentration was selected for further experiment. The pot experiment included four treatments: control (soil), 100Cu (100 mg Cu kg-1 soil), 5%BF (v/v), and 5%BF+100Cu, which were carried out for 30 days, after which the morphological, physiological, and biochemical parameters of B. napus were studied. The Cu treatment caused its accumulation in shoot and root up to 16.9 and 30.4 mg kg-1 DW, respectively, and increased malondialdehyde (MDA) content by 20%. Application of BF with copper led to the decrease in the Cu accumulation by 20% for shoot and 28% for root while MDA content was the same as in the control. Both treatments of BF with and without Cu increased chlorophyll a and b content by 1.3 times on average as well as non-enzymatic antioxidants such as soluble phenolic compounds (1.3 times) and free proline (1.6 times). Moreover, BF + Cu led to the increase in the biomass of shoot and root by 30 and 60%, respectively, while there was no significant effect on the growth characteristics of plants after the addition of BF without Cu. The study elucidates that BF based on B.altitudinis strain TF16a and biochar can be a promising bioformulation which could increase rapeseed growth under the moderate Cu concentration in soil.

4.
Chemosphere ; 276: 130038, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33690033

ABSTRACT

Copper (Cu) is an essential element, however it's excess into the environment causes detrimental effect on plant and risks for public health. Four Cu and drought tolerant 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing rhizobacteria were isolated from the roots of Trifolium repens L. growing on Cu smelter contaminated soils, characterized and identified based on 16S rRNA gene sequencing. A consortium of high ACC deaminase (53.74 µM α-ketobutyrate mg-1 protein h-1) producing bacteria Pseudomonas sp. strain TR15a + siderophore producing Bacillus aerophilus strain TR15c significantly (p < 0.05) produced better results for multiple-metal tolerance including Cu (1750 mg kg-1), antibiotic resistance (ampicillin, kanamycin, chloramphenicol, penicillin, tetracycline, and streptomycin) and plant growth promoting attributes (phosphate solubilization: 315 mg L-1, indole-3-acetic acid (IAA) production: 8 mg L-1, ammonia and hydrogen cyanide production) as compared to individual isolates. Pot scale experiment (enriched with 100 mg Cu kg-1) showed inoculation of Helianthus annuus seeds with consortium of TR15a + TR15c had significantly (p < 0.05) improved seed germination by 32%, total dry biomass by 64%, root Cu by 47% and shoot Cu by 75% as compared to uninoculated control whereas 0.2-7 fold higher results were observed for above stated parameters as compared to four individual isolates studied. The result suggests consortium of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing B. aerophilus TR15c could play a vital role in enhanced Cu uptake and improvement of biomass and may provide a better alternative for decontamination of Cu contaminated natural ecosystem than individual isolates.


Subject(s)
Helianthus , Soil Pollutants , Bacillus , Carbon-Carbon Lyases , Copper/analysis , Ecosystem , Plant Roots/chemistry , Pseudomonas , RNA, Ribosomal, 16S/genetics , Siderophores , Soil Microbiology , Soil Pollutants/analysis
5.
Environ Geochem Health ; 43(4): 1401-1413, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32347513

ABSTRACT

The present investigation is the first in situ comparative study for the identification of Ni and Cu accumulation strategies involved in Odontarrhena obovata (syn. Alyssum obovatum (C.A. Mey.) Turcz.) growing in Cu-rich smelter-influenced (CSI) and non-Cu-influenced (NCI) sites. The total and Na2EDTA (disodium ethylenediaminetetraacetic acid)-extractable metal concentration in soils and plant tissues (roots, stem, leaves and flowers) were determined for CSI and NCI sites. High concentrations of total Ni, Cr, Co and Mg in the soil suggest serpentine nature of both the sites. In spite of high total and extractable Cu concentrations in CSI soil, majority of its accumulation was restricted to O. obovata roots showing its excluder response. Since the translocation and bioconcentration factors of Ni > 1 and the foliar Ni concentration > 1000 µg g-1, it can be assumed that O. obovata has Ni hyperaccumulation potential for both the sites. No significant differences in chlorophyll content in O. obovata leaves were observed between studied sites, suggesting higher tolerance of this species under prolonged heavy metal stress. Furthermore, this species from CSI site demonstrated rather high viability under extreme technogenic conditions due to active formation of antioxidants such as ascorbate, free proline and protein thiols. The presence of Cu in higher concentration in serpentine soil does not exert detrimental effect on O. obovata and its Ni hyperaccumulation ability. Thus, O. obovata could act as a putative plant species for the remediation of Cu-rich/influenced serpentine soils without compromising its Ni content and vitality.


Subject(s)
Brassicaceae/growth & development , Copper/pharmacokinetics , Metals, Heavy/analysis , Nickel/pharmacokinetics , Soil Pollutants/pharmacokinetics , Antioxidants/metabolism , Biodegradation, Environmental , Brassicaceae/metabolism , Copper/analysis , Metallurgy , Metals, Heavy/toxicity , Nickel/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Russia , Soil/chemistry , Soil Pollutants/analysis
6.
Chemosphere ; 266: 128983, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33272662

ABSTRACT

Organic fertilizers became a better alternative to chemical fertilizers in modern agricultural practices however, contamination of copper (Cu) from organic fertilizer is still a major concern for the globe. Plant growth promoting (PGP) microorganisms showed their efficiency to combat with this problem and thus Cu tolerant PGP endophytes from roots of Odontarrhena obovata (Alyssum obovatum) growing on Cu smelter contaminated serpentine soil were explored in present study. Out of twenty-four isolates, Pseudomonas lurida strain EOO26 identified by 16s rRNA gene sequencing was selected to check its efficacy for Cu-remediation. The strain EOO26 showed multi-metal tolerance, drought resistance and exhibited PGP attributes such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophore and ammonia production. Significant production of indole-3-acetic acid and phosphate-solubilization under different Cu concentration (0-100 mg L-1) at varying pH (5.0-8.0) suggests potentiality of this strain to work effectively under wide range of abiotic stress conditions. Plant growth experiment (pH 6.8 ± 0.3) in copper spiked soil suggested a significant increase in length and dry weight of root and shoot of sunflower (Helianthus annuus) after inoculation with strain EOO26. Plants inoculated with strain EOO26 resulted in increase in Cu uptake by 8.6-fold for roots and 1.9-fold for leaves than uninoculated plants. The total plant uptake in inoculated Cu treatment was 2.6-fold higher than uninoculated one, which is much higher than the previously reported Cu accumulating plants. The excellent adaptation abilities and promising metal removal efficiency strongly indicate superiority of strain EOO26 for phytoremediation of Cu-contamination and may work effectively for Cu removal from contaminated soils.


Subject(s)
Helianthus , Soil Pollutants , Biodegradation, Environmental , Copper/analysis , Endophytes/genetics , Plant Roots/chemistry , Pseudomonas , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Soil Pollutants/analysis
7.
Environ Geochem Health ; 42(12): 4113-4124, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31520319

ABSTRACT

Active smelters release high concentration of multiple toxic metal(loid)s into the environment, degrading the soil cover and posing high risks to human health. The present study investigates Cu along with other metal(loids) such as As, Cd, Hg, Co, Mn, Pb and Zn in the soil collected from the vicinity of Cu smelter, Karabash, Russia, and potential health risks to local children and adults were assessed. The average concentrations of Cu, Zn, Pb, As, Cd, and Hg in the exposed soil were 2698, 1050, 702, 392, 9 and 2 mg kg-1, respectively, which was significantly (p < 0.05) much higher than reference soil: Cu(107), As(18), Cd(0.3), Hg(0.2), Pb(54) and Zn(125) mg kg-1. The enrichment factor (EF) for Cu, Hg, Pb and Zn showed significant enrichment, whereas very high enrichment was recorded for As (20.0) and Cd (27.6) suggesting the soil was severely affected by smelting activities. The pollution load index was tenfold higher than the acceptable level of one, whereas potential ecological risk factor showed very high potential risks of Cd and Hg, along with a considerable ecological risk of As and Cu. Very high ecological risk index of 1810 indicates severe degradation of environmental ecosystem. The results of EF, Pearson correlation and principle component analysis were complementary and suggest the anthropogenic source of contamination for Cu, As, Pb, Hg and Cd. The present result suggests As > Pb > Cu in the exposed soil were the major contributors for the health risks and account for 81%, 12% and 5%, and 77%, 12% and 8% of hazard quotient for children and adults, respectively. Noticeably, the health risks to local children dwelling in the vicinity of Cu smelter were 12 and 20 times higher than to adult and the acceptable level of one, respectively. Therefore, in order to reduce the health risk due to metal(loid)s, mitigation measures are needed to remediate the pollution of the exposed soil.


Subject(s)
Metalloids/analysis , Metallurgy , Metals, Heavy/analysis , Soil Pollutants/analysis , Copper/analysis , Copper/toxicity , Environmental Monitoring , Humans , Metalloids/toxicity , Metals, Heavy/toxicity , Risk Assessment , Russia , Soil/chemistry , Soil Pollutants/toxicity
8.
Ecotoxicol Environ Saf ; 160: 197-206, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29804017

ABSTRACT

Present study deals with the effect of 24 h pre-incubation with exogenous anthocyanins (ANTH), extracted from red cabbage leaves, on key metabolic processes (photosynthesis and respiration) and pro-/antioxidant balance in the aquatic macrophyte Egeria densa (Planch.) Casp., Hydrocharitaceae family, treated with Cd and Mn (in sulfate form) at a concentration of 100 µmol. After five days of metal treatments, Cd was accumulated and the damage caused to metabolic processes was stronger than Mn. In Cd-treated leaves, the protein level, chlorophyll concentration and maximal photochemical efficiency of PS II decreased twofold, and net-photosynthesis was significantly inhibited, whereas lipid peroxidation and H2O2 production increased. In turn, protective responses developed, including an increase in the total soluble thiols, alternative respiratory pathway capacity and the activity of superoxide dismutase and peroxidases. Pre-incubation in the ANTH-enriched extract caused an increase in foliar ANTH content, enhanced Cd and reduced Mn uptake into the tissue. A decrease in the level of oxidative reactions, an increase in the protein and chlorophyll concentration compared to the control values and a partial improvement of the photosynthetic parameters confirmed the ability of ANTH to reduce Cd-induced damage effects and to mitigate ROS-driven stress reactions. Stimulation of catalase and ascorbate peroxidase activity, an alternative respiration capacity and non-enzymatic antioxidant (carotenoids, ascorbate and proline) synthesis by ANTH were also revealed. These data suggest that ANTH-enriched extract from red cabbage leaves has a protective action against metal toxicity in Egeria plants.


Subject(s)
Anthocyanins/pharmacology , Cadmium/toxicity , Hydrocharitaceae/drug effects , Manganese/toxicity , Protective Agents/pharmacology , Anthocyanins/isolation & purification , Ascorbic Acid/metabolism , Brassica/chemistry , Carotenoids/metabolism , Catalase/metabolism , Chlorophyll/metabolism , Hydrocharitaceae/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Peroxidases/metabolism , Photosynthesis/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Proline/metabolism , Protective Agents/isolation & purification , Superoxide Dismutase/metabolism
9.
Ecotoxicol Environ Saf ; 148: 152-159, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29040823

ABSTRACT

In the present study, two fresh water plant species Egeria densa (Planch.) Casp. and Ceratophyllum demersum L. were subjected to separate and combined action of urea (2mМ) and metals (Ni and Cu, 10µM) to investigate the phytoremediation potential of these two submerged macrophytes during short-term experiments (48h). Both submerged macrophytes demonstrated high accumulative potential for Ni and Cu (average bioconcentration factors were 2505 for Ni and 3778 for Cu). The urea (2 mM) was not significantly toxic for studied plant species. Futhermore, urea worked as an additional source of nitrogen and stimulated some metabolic processes such as the synthesis of photosynthetic pigments, soluble proteins, non-enzymatic antioxidants, and activated some enzymes. Adding urea to the metals increased their accumulation in both macrophytes (on average by 35% for Ni and 15% for Cu). Combined action of urea and Ni did not have a significant effect on antioxidant response, but caused a sharp increase of urease activity (4 folds on an average) in both plants. The copper exerted a stronger toxic effect on both studied macrophytes compared to nickel. Adding urea to copper in some cases diminished the toxic action of this metal. Study concludes that the responses of E. densa and C. demersum to urea and metal action (separate and combined) were depended on the type of pollutant and the activity of antioxidant defence system. Therefore, the studied aquatic macrophytes found to be potential phytoremediators of water bodies, the addition of an organic nitrogen source in the form of urea in environmentally relevant concentration will increase the efficiency of phytoextraction of metals.


Subject(s)
Copper/analysis , Hydrocharitaceae/metabolism , Nickel/analysis , Urea/metabolism , Water Pollutants, Chemical/analysis , Antioxidants/metabolism , Biodegradation, Environmental , Copper/metabolism , Fresh Water/chemistry , Nickel/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Water Pollutants, Chemical/metabolism
10.
Int J Phytoremediation ; 18(10): 1037-45, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-27167595

ABSTRACT

Aquatic macrophytes, viz. Sagittaria sagittifolia L., Lemna gibba L., Elodea canadensis Michx., Batrachium trichophyllum (Chaix.) Bosch., Ceratophyllum demersum L. and Potamogeton sp. (P. perfoliatus L., P. alpinus Balb., P. crispus L., P. berchtoldii Fieber, P. friesii Rupr., P. pectinatus L.) were collected from 11 sites for determining their metal accumulation and thiols content. Cu(2+), Ni(2+), Mn(2+), Zn(2+), and Fe(3+) exceeded maximum permissible concentrations in chosen sites. Significant transfer of metals from water to leaves is observed in the order of Ni(2+) < Cu(2+) < Zn(2+) < Fe(3+) < Mn(2+). The maximum variation of bioconcentration factor was noticed for manganese. The accumulation of heavy metals in leaves was correlated with non-protein and protein thiols, confirming their important role in metal tolerance. The largest contribution was provided by Cu(2+) (on the average r = 0.88, p < 0.05), which obviously can be explained as an important role of these ions in thiols synthesis. Increased synthesis of thiols in the leaves allows the usage of SH-containing compounds as biomarkers of metal tolerance. Considering accumulation of metals and tolerance, B. trichophyllum, C. demersum and L. gibba are the most suitable species for phytoremediation of highly multimetal contamination, while E. canadensis and some species of Potamageton are suitable for moderately metal-polluted sites.


Subject(s)
Magnoliopsida/metabolism , Metals, Heavy/metabolism , Sulfhydryl Compounds/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Biomarkers/metabolism , Magnoliopsida/chemistry , Plant Leaves/metabolism , Russia , Sulfhydryl Compounds/analysis , Water Pollutants, Chemical/analysis
11.
Protoplasma ; 253(2): 543-51, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25985854

ABSTRACT

Elodea canadensis is an aquatic macrophyte used widely as a bioindicator for the monitoring of water quality and in the phytoremediation of metal-contaminated waters. This study considers the kinetics of nickel bioaccumulation and changes in accompanying metabolic and stress-related physiological parameters. These include photosynthetic activity, pigment content, the accumulation of thiol-containing compounds, thiobarbituric acid-reactive substance (TBARS) products, and the activity of selected antioxidant enzymes (catalase, glutathione reductase, superoxide dismutase). Elodea leaves accumulated nickel according to pseudo-second-order kinetics, and the protective responses followed a time sequence which was related to the apparent rates of nickel accumulation. The applicability of second-order kinetics to the Ni uptake by Elodea leaves during the first 8 h of exposure to the metal suggested that the passive binding of metal ions (chemisorption) was a rate-limiting step at the initial phase of Ni accumulation. This phase was accompanied by an increase in photosynthetic activity together with elevated photosynthetic pigments and protein synthesis, the enhanced activity of antioxidant enzymes, and increased thiol concentration. In contrast, there was a decrease in metabolic activity upon the accumulation of TBARS, and the decline in enzyme activity was observed in the saturation phase of Ni accumulation (8-24 h). These results show that a correlation exists between the protective response and the apparent kinetic rate of Ni uptake. Thus, the time of exposure to the toxicant is a crucial factor in the activation of specific mechanisms of Ni detoxification and stress alleviation.


Subject(s)
Hydrocharitaceae/metabolism , Nickel/metabolism , Plant Leaves/metabolism , Water Pollutants, Chemical/metabolism , Biomarkers/metabolism , Hydrocharitaceae/cytology , Kinetics , Nickel/analysis , Oxidative Stress , Photosynthesis , Plant Leaves/cytology , Thiobarbituric Acid Reactive Substances/metabolism , Water Pollutants, Chemical/analysis , Water Quality
12.
Environ Sci Pollut Res Int ; 22(17): 13556-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25943514

ABSTRACT

Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.


Subject(s)
Antioxidants/metabolism , Fertilizers/toxicity , Hydrocharitaceae/drug effects , Oxidative Stress/drug effects , Plant Leaves/drug effects , Urea/toxicity , Dose-Response Relationship, Drug , Hydrocharitaceae/metabolism , Lipid Peroxidation/drug effects , Peroxidase/metabolism , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
13.
Int J Phytoremediation ; 16(6): 621-33, 2014.
Article in English | MEDLINE | ID: mdl-24912247

ABSTRACT

We examined the uptake of five heavy metals (Cu, Fe, Ni, Zn, and Mn) in Ceratophyllum demersum L. (hornwort) and Potamogeton alpinus Balb. (pondweed) from Iset' river, Ural region, Russia. This study was conducted in a territory that is highly urbanized where the surface waters are contaminated by a wide spectrum of pollutants. The environmental situation in this territory drastically deteriorated due to anthropogenic activity. The water quality in most of the water bodies in the Ural region is rather poor. In a comparative study of C. demersum and P. alpinus, differential accumulation pattern was noted for heavy metals (HMs). Higher amounts of HMs accumulated in C. demersum compared to P. alpinus. Also it was shown that in leaves of C. demersum there were high amount of total phosphorus, nitrogen, organics acids and ash; high activity of guaiacol peroxidase; high content of nonenzymatic antioxidants viz., flavonoids, ascorbate, glutathione and proline; high amount of thiols (soluble and membrane bound) compared to P. alpinus.


Subject(s)
Anthocerotophyta/physiology , Metals, Heavy/metabolism , Potamogetonaceae/physiology , Water Pollutants, Chemical/metabolism , Adaptation, Physiological , Antioxidants/analysis , Antioxidants/metabolism , Biodegradation, Environmental , Carboxylic Acids/analysis , Carboxylic Acids/metabolism , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves , Rivers , Russia , Water Pollutants, Chemical/analysis , Water Quality
14.
Environ Sci Pollut Res Int ; 20(9): 6172-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23546854

ABSTRACT

This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L(-1)) on photosynthetic pigments (measured spectrophotometrically), uptake of (14)CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler's reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L(-1)) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L(-1)) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L(-1), respectively. However, exogenous urea in high concentration (1,000 mg L(-1)) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.


Subject(s)
Carbon Dioxide/metabolism , Chlorophyll/metabolism , Hydrocharitaceae/drug effects , Hydrocharitaceae/metabolism , Urea/pharmacology , Urease/metabolism , Carbon Radioisotopes , Dose-Response Relationship, Drug , Environmental Monitoring , Hydrocharitaceae/enzymology , Photosynthesis/physiology , Urea/administration & dosage
15.
Protoplasma ; 240(1-4): 69-74, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19953280

ABSTRACT

Lemna species are reported to accumulate a variety of metals from contaminated/polluted sites. Cadmium is a nonessential element for plant metabolism. In this work, we aimed to investigate physiological responses to low doses of cadmium (up to 100 microM). From exposure to the lowest Cd concentration (1 microM) to the highest (100 microM), photosynthetic pigments (Chl a, b, carotenoids) and the ratios of Chl a/b, Chl (a + b)/carotenoids decreased as a function of the Cd dose. The content of soluble proteins decreased in a dose-dependent manner, while total soluble thiols drastically increased. In Cd-treated fronds, the dose-dependent accumulation of a polypeptide with an apparent molecular weight of 24 kDa, as well as the appearance of two smaller polypeptides with molecular weights <6.5 kDa, was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Our results show that in Lemna trisulca, different adaptative mechanisms may be involved in counterbalancing low and high doses of a particular toxicant (cadmium). This feature makes this plant potentially useful material in biomonitoring and phytotoxicity testing.


Subject(s)
Araceae/drug effects , Araceae/metabolism , Cadmium/toxicity , Biomarkers/metabolism , Cadmium/administration & dosage , Carrier Proteins/metabolism , Ecotoxicology , Environmental Monitoring , Environmental Pollutants/administration & dosage , Environmental Pollutants/toxicity , Photosynthesis/drug effects , Pigments, Biological/metabolism , Plant Proteins/metabolism , Sulfhydryl Compounds/metabolism
16.
Aquat Toxicol ; 95(3): 213-21, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19822371

ABSTRACT

Egeria densa has ability to grow in heavy metal contaminated and polluted bodies of water. Shoots exposed to Cd at concentrations up to 300microM for 7 days showed a pronounced decrease in chlorophyll a and in total protein concentration. Thiol-containing compounds and low-molecular-weight polypeptides were detected in Cd-treated plant extracts by gel filtration chromatography. Two Cd-binding fractions, a thiol-enriched fraction and a non-thiol fraction with a lower molecular weight were identified in extracts by gel filtration. The main fraction of thiol-containing polypeptide, purified by gel filtration and anion-exchange chromatography had a molecular weight of approximately 10kDa. This peptide was characterized by a broad absorption band specific to mercaptide bonds and Cd-sensitive fluorescence emission of aromatic amino acid residues. Our results indicate that cadmium exposure of plants resulted in both a formation of thiol-enriched cadmium complexing peptides and a synthesis of low-molecular-weight metal chelators. The putative role of these compounds in Cd detoxification is discussed.


Subject(s)
Cadmium/toxicity , Gene Expression Regulation, Plant/drug effects , Hydrocharitaceae/drug effects , Hydrocharitaceae/metabolism , Water Pollutants, Chemical/toxicity , Cadmium/pharmacokinetics , Inactivation, Metabolic
17.
Chemosphere ; 77(3): 392-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19692109

ABSTRACT

Biological accumulation of nickel and concomitant ecophysiological responses were studied in the leaves of Elodea canadensis treated with different concentrations of Ni (1-50 microM) for 5d. In low concentrations nickel was accumulated mainly in the soluble protein fraction, which correlated with its highest observed accumulation coefficient. In higher concentrations, Ni binding in the non-protein soluble fraction was observed. The effects of increasing nickel concentrations on the accumulation of photosynthetic pigments, gas exchange rates, lipid peroxidation, biosynthesis of thiol-containing compounds and the activity of selected enzymes--markers of oxidative stress were investigated. The appearance of several new polypeptides with apparent molecular weights below 20 kDa, was found by SDS-PAGE in Ni-treated Elodea leaves. Our results indicate that Ni, in concentrations up to 10 microM could induce sub-lethal oxidative stress in Elodea leaves. In response, plants developed detoxification mechanisms including an enhanced biosynthesis of thiol-containing compounds which facilitated Ni accumulation and sequestration in plant tissues effectively. Hence, E. canadensis could be used in the biological removal of Ni from polluted water up to 10 microM concentration.


Subject(s)
Hydrocharitaceae/drug effects , Nickel/toxicity , Soil Pollutants/toxicity , Biomarkers/metabolism , Chlorophyll/metabolism , Environmental Exposure , Lipid Peroxidation/drug effects , Nickel/metabolism , Oxidative Stress , Peptides/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Proteins/drug effects , Plant Proteins/metabolism , Soil Pollutants/metabolism
18.
Bull Environ Contam Toxicol ; 82(5): 627-32, 2009 May.
Article in English | MEDLINE | ID: mdl-19159049

ABSTRACT

Elodea canadensis (Canadian waterweed) has an ability to accumulate and bioconcentrate heavy metals. In this work, selected cellular responses for Cu treatment were studied in leaves of E. canadensis. Short term experiments, i.e. 1 week exposure to 0.5, 1, 5, and 10 microM of Cu indicated that concentrations up to 10 microM Cu causes a pronounced accumulation of photosynthetic pigments, a drastic degradation of soluble proteins with molecular weight above 18 kDa and a rapid accumulation of polypeptides with molecular weight below 14 kDa. The connection of these observations with copper detoxification mechanisms in aquatic macrophytes are discussed.


Subject(s)
Copper/toxicity , Hydrocharitaceae/drug effects , Water Pollutants, Chemical/toxicity , Hydrocharitaceae/metabolism , Photosynthesis , Pigments, Biological/metabolism , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...