Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38004457

ABSTRACT

The enormous influence in terms of bioactivity, affinity, and selectivity represented by the replacement of (L)-2,6-dimethyl tyrosine (Dmt) instead of Phenylalanine (Phe) into Nociceptin/orphanin (N/OFQ) neuropeptide analogues has been well documented in the literature. More recently, the non-natural amino acid (L)-2-methyl tyrosine (Mmt), with steric hindrance included between Tyr and Dmt, has been studied because of the modulation of steric effects in opioid peptide chains. Here, we report a new synthetic strategy to obtain Mmt based on the well-known Pd-catalyzed ortho-C(sp2)-H activation approach, because there is a paucity of other synthetic routes in the literature to achieve it. The aim of this work was to force only the mono-ortho-methylation process over the double ortho-methylation one. In this regard, we are pleased to report that the introduction of the dibenzylamine moiety on a Tyr aromatic nucleus is a convenient and traceless solution to achieve such a goal. Interestingly, our method provided the aimed Mmt either as N-Boc or N-Fmoc derivatives ready to be inserted into peptide chains through solid-phase peptide synthesis (SPPS). Importantly, the introduction of Mmt in place of Phe1 in the sequence of N/OFQ(1-13)-NH2 was very well tolerated in terms of pharmacological profile and bioactivity.

2.
Front Pharmacol ; 14: 1133961, 2023.
Article in English | MEDLINE | ID: mdl-36909169

ABSTRACT

The mu opioid receptor agonists are the most efficacious pain controlling agents but their use is accompanied by severe side effects. More recent developments indicate that some ligands can differentially activate receptor downstream pathways, possibly allowing for dissociation of analgesia mediated through the G protein from the opioid-related side effects mediated by ß-arrestin pathway. In an effort to identify such biased ligands, here we present a series of thirteen endomorphin-2 (EM-2) analogs with modifications in positions 1, 2, and/or 3. All obtained analogs behaved as mu receptor selective agonists in calcium mobilization assay carried out on cells expressing opioid receptors and chimeric G proteins. A Bioluminescence Resonance Energy Transfer (BRET) approach was employed to determine the ability of analogs to promote the interaction of the mu opioid receptor with G protein or ß-arrestin 2. Nearly half of the developed analogs showed strong bias towards G protein, in addition four compounds were nearly inactive towards ß-arrestin 2 recruitment while blocking the propensity of EM-2 to evoke mu-ß-arrestin 2 interaction. The data presented here contribute to our understanding of EM-2 interaction with the mu opioid receptor and of the transductional propagation of the signal. In addition, the generation of potent and selective mu receptor agonists strongly biased towards G protein provides the scientific community with novel tools to investigate the in vivo consequences of biased agonism at this receptor.

3.
Biomedicines ; 11(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36831123

ABSTRACT

Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as "novel" GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.

4.
Front Pharmacol ; 13: 873082, 2022.
Article in English | MEDLINE | ID: mdl-35529436

ABSTRACT

The present study investigated the in vitro pharmacology of the human kappa opioid receptor using multiple assays, including calcium mobilization in cells expressing chimeric G proteins, the dynamic mass redistribution (DMR) label-free assay, and a bioluminescence resonance energy transfer (BRET) assay that allows measurement of receptor interaction with G protein and ß-arrestin 2. In all assays, dynorphin A, U-69,593, and [D-Pro10]dyn(1-11)-NH2 behaved as full agonists with the following rank order of potency [D-Pro10]dyn(1-11)-NH2 > dynorphin A ≥ U-69,593. [Dmt1,Tic2]dyn(1-11)-NH2 behaved as a moderate potency pure antagonist in the kappa-ß-arrestin 2 interaction assay and as low efficacy partial agonist in the other assays. Norbinaltorphimine acted as a highly potent and pure antagonist in all assays except kappa-G protein interaction, where it displayed efficacy as an inverse agonist. The pharmacological actions of novel kappa ligands, namely the dynorphin A tetrameric derivative PWT2-Dyn A and the palmitoylated derivative Dyn A-palmitic, were also investigated. PWT2-Dyn A and Dyn A-palmitic mimicked dynorphin A effects in all assays showing similar maximal effects but 3-10 fold lower potency. In conclusion, in the present study, multiple in vitro assays for the kappa receptor have been set up and pharmacologically validated. In addition, PWT2-Dyn A and Dyn A-palmitic were characterized as potent full agonists; these compounds are worthy of further investigation in vivo for those conditions in which the activation of the kappa opioid receptor elicits beneficial effects e.g. pain and pruritus.

5.
Neuropharmacology ; 209: 109020, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35247453

ABSTRACT

Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and ß-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the ß-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote ß-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.


Subject(s)
Fentanyl , Receptors, Opioid, mu , Analgesics, Opioid , Animals , Fentanyl/analogs & derivatives , Fentanyl/pharmacology , Furans , Male , Mice , Pain/drug therapy , Receptors, Opioid/metabolism , Receptors, Opioid, mu/agonists , beta-Arrestin 2/metabolism
6.
Pharmacol Res ; 173: 105880, 2021 11.
Article in English | MEDLINE | ID: mdl-34506902

ABSTRACT

G proteins represent intracellular switches that transduce signals relayed from G protein-coupled receptors. The structurally related macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent, selective inhibitors of the Gαq protein family. We recently discovered that radiolabeled FR and YM display strongly divergent residence times, which translates into significantly longer antiasthmatic effects of FR. The present study is aimed at investigating the molecular basis for this observed disparity. Based on docking studies, we mutated amino acid residues of the Gαq protein predicted to interact with FR or YM, and recombinantly expressed the mutated Gαq proteins in cells in which the native Gαq proteins had been knocked out by CRISPR-Cas9. Both radioligands showed similar association kinetics, and their binding followed a conformational selection mechanism, which was rationalized by molecular dynamics simulation studies. Several mutations of amino acid residues near the putative binding site of the "lipophilic anchors" of FR, especially those predicted to interact with the isopropyl group present in FR but not in YM, led to dramatically accelerated dissociation kinetics. Our data indicate that the long residence time of FR depends on lipophilic interactions within its binding site. The observed structure-kinetic relationships point to a complex binding mechanism of FR, which likely involves snap-lock- or dowel-like conformational changes of either ligand or protein, or both. These experimental data will be useful for the design of compounds with a desired residence time, a parameter that has now been recognized to be of utmost importance in drug development.


Subject(s)
Depsipeptides/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , Peptides, Cyclic/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Kinetics , Models, Molecular , Protein Binding
7.
J Med Chem ; 64(10): 6656-6669, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33998786

ABSTRACT

The nociceptin/orphanin FQ (N/OFQ)/N/OFQ receptor (NOP) system controls different biological functions including pain and cough reflex. Mixed NOP/opioid receptor agonists elicit similar effects to strong opioids but with reduced side effects. In this work, 31 peptides with the general sequence [Tyr/Dmt1,Xaa5]N/OFQ(1-13)-NH2 were synthesized and pharmacologically characterized for their action at human recombinant NOP/opioid receptors. The best results in terms of NOP versus mu opioid receptor potency were obtained by substituting both Tyr1 and Thr5 at the N-terminal portion of N/OFQ(1-13)-NH2 with the noncanonical amino acid Dmt. [Dmt1,5]N/OFQ(1-13)-NH2 has been identified as the most potent dual NOP/mu receptor peptide agonist so far described. Experimental data have been complemented by in silico studies to shed light on the molecular mechanisms by which the peptide binds the active form of the mu receptor. Finally, the compound exerted antitussive effects in an in vivo model of cough.


Subject(s)
Peptides/chemistry , Receptors, Opioid, mu/agonists , Receptors, Opioid/agonists , Animals , Binding Sites , Cough/chemically induced , Cough/drug therapy , Disease Models, Animal , Guinea Pigs , Humans , Hydrophobic and Hydrophilic Interactions , Male , Molecular Dynamics Simulation , Peptides/metabolism , Peptides/therapeutic use , Receptors, Opioid/metabolism , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Nociceptin Receptor
8.
Eur J Pharmacol ; 903: 174132, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33933466

ABSTRACT

Opioid-induced constipation is the most prevalent adverse effect of opioid drugs. Peripherally acting mu opioid receptor antagonists (PAMORAs), including naloxegol, are indicated for the treatment of opioid-induced constipation. The aim of this study was the in vitro and in vivo pharmacological characterization of naloxegol in comparison with naloxone. In vitro experiments were performed to measure calcium mobilization in cells coexpressing opioid receptors and chimeric G proteins and mu receptor interaction with G protein and ß-arrestin 2 using bioluminescence resonance energy transfer. In vivo experiments were performed in mice to measure pain threshold using the tail withdrawal assay and colonic transit using the bead expulsion assay. In vitro, naloxegol behaved as a selective and competitive mu receptor antagonist similarly to naloxone, being 3-10-fold less potent. In vivo, naloxone was effective in blocking fentanyl actions when given subcutaneously (sc), but not per os (po). In contrast, naloxegol elicited very similar effects with sc or po administration counteracting in a dose dependent manner the constipating effects of fentanyl without interfering with the fentanyl mediated analgesia. Thus, a useful PAMORA action could be obtained with naloxegol both after po and sc administration.


Subject(s)
Constipation/drug therapy , Morphinans/pharmacology , Narcotic Antagonists/pharmacology , Polyethylene Glycols/pharmacology , Administration, Oral , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Analgesics, Opioid/pharmacology , Animals , Behavior, Animal/drug effects , CHO Cells , Calcium/metabolism , Constipation/chemically induced , Cricetulus , Fentanyl/administration & dosage , Fentanyl/adverse effects , Fentanyl/pharmacology , Injections, Subcutaneous , Male , Mice , Morphinans/administration & dosage , Morphine/pharmacology , Naloxone/administration & dosage , Naloxone/pharmacology , Narcotic Antagonists/administration & dosage , Pain/drug therapy , Polyethylene Glycols/administration & dosage , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/drug effects
9.
Front Neurosci ; 15: 657153, 2021.
Article in English | MEDLINE | ID: mdl-33859548

ABSTRACT

Nociceptin/orphanin FQ controls several functions, including pain transmission, via stimulation of the N/OFQ peptide (NOP) receptor. Here we tested the hypothesis that NOP biased agonism may be instrumental for identifying innovative analgesics. In vitro experiments were performed with the dynamic mass redistribution label free assay and the NOP non-peptide agonists Ro 65-6570, AT-403 and MCOPPB. In vivo studies were performed in wild type and ß-arrestin 2 knockout mice using the formalin, rotarod and locomotor activity tests. In vitro all compounds mimicked the effects of N/OFQ behaving as potent NOP full agonists. In vivo Ro 65-6570 demonstrated a slightly higher therapeutic index (antinociceptive vs. motor impairment effects) in knockout mice. However, all NOP agonists displayed very similar therapeutic index in normal mice despite significant differences in G protein biased agonism. In conclusion the different ability of inducing G protein vs. ß-arrestin 2 recruitment of a NOP agonist cannot be applied to predict its antinociceptive vs. motor impairment properties.

10.
J Biol Chem ; 294(15): 5747-5758, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30745359

ABSTRACT

Transmembrane signals initiated by a range of extracellular stimuli converge on members of the Gq family of heterotrimeric G proteins, which relay these signals in target cells. Gq family G proteins comprise Gq, G11, G14, and G16, which upon activation mediate their cellular effects via inositol lipid-dependent and -independent signaling to control fundamental processes in mammalian physiology. To date, highly specific inhibition of Gq/11/14 signaling can be achieved only with FR900359 (FR) and YM-254890 (YM), two naturally occurring cyclic depsipeptides. To further development of FR or YM mimics for other Gα subunits, we here set out to rationally design Gα16 proteins with artificial FR/YM sensitivity by introducing an engineered depsipeptide-binding site. Thereby we permit control of G16 function through ligands that are inactive on the WT protein. Using CRISPR/Cas9-generated Gαq/Gα11-null cells and loss- and gain-of-function mutagenesis along with label-free whole-cell biosensing, we determined the molecular coordinates for FR/YM inhibition of Gq and transplanted these to FR/YM-insensitive G16. Intriguingly, despite having close structural similarity, FR and YM yielded biologically distinct activities: it was more difficult to perturb Gq inhibition by FR and easier to install FR inhibition onto G16 than perturb or install inhibition with YM. A unique hydrophobic network utilized by FR accounted for these unexpected discrepancies. Our results suggest that non-Gq/11/14 proteins should be amenable to inhibition by FR scaffold-based inhibitors, provided that these inhibitors mimic the interaction of FR with Gα proteins harboring engineered FR-binding sites.


Subject(s)
Depsipeptides/pharmacology , Enzyme Inhibitors/pharmacology , GTP-Binding Protein alpha Subunits , Peptides, Cyclic/pharmacology , Protein Engineering , Animals , CRISPR-Cas Systems , GTP-Binding Protein alpha Subunits/antagonists & inhibitors , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Mice
11.
Handb Exp Pharmacol ; 254: 69-89, 2019.
Article in English | MEDLINE | ID: mdl-30725284

ABSTRACT

The nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) is a G protein-coupled receptor involved in the regulation of several physiological functions and pathological conditions. Thus, researchers from academia and industry are pursuing NOP to discover and study novel pharmacological entities. In a multidisciplinary effort of pharmacologists, medicinal chemists, and molecular and structural biologists the mechanisms of NOP activation and inhibition have been, at least partially, disentangled. Here, we review the in vitro methodologies employed, which have contributed to our understanding of this target. We hope this chapter guides the reader through the mostly established assay platforms to investigate NOP pharmacology, and gives some hints taking advantage from what has already illuminated the function of other GPCRs. We analyzed the pharmacological results obtained with a large panel of NOP ligands investigated in several assays including receptor binding, stimulation of GTPγS binding, decrease of cAMP levels, calcium flux stimulation via chimeric G proteins, NOP/G protein and NOP/ß-arrestin interaction, label-free assays such as dynamic mass redistribution, and bioassays such as the electrically stimulated mouse vas deferens.


Subject(s)
Opioid Peptides/pharmacology , Receptors, Opioid , beta-Arrestins/pharmacology , Animals , Biological Assay , Ligands , Mice , Opioid Peptides/chemistry , Protein Binding , Receptors, Opioid/chemistry , beta-Arrestins/chemistry , Nociceptin
12.
PLoS One ; 13(8): e0203021, 2018.
Article in English | MEDLINE | ID: mdl-30161182

ABSTRACT

The Nociceptin/Orphanin FQ (N/OFQ) peptide NOP receptor is coupled to pertussis toxin (PTX)-sensitive G proteins (Gi/o) whose activation leads to the inhibition of both cAMP production and calcium channel activity, and to the stimulation of potassium currents. The label free dynamic mass redistribution (DMR) approach has been demonstrated useful for investigating the pharmacological profile of G protein-coupled receptors. Herein, we employ DMR technology to systematically characterize the pharmacology of a large panel of NOP receptor ligands. These are of peptide and non-peptide nature and display varying degrees of receptor efficacy, ranging from full agonism to pure antagonism. Using Chinese hamster ovary (CHO) cells expressing the human NOP receptor we provide rank orders of potency for full and partial agonists as well as apparent affinities for selective antagonists. We find the pharmacological profile of NOP receptor ligands to be similar but not identical to values reported in the literature using canonical assays for Gi/o-coupled receptors. Our data demonstrate that holistic label-free DMR detection can be successfully used to investigate the pharmacology of the NOP receptor and to characterize the cellular effects of novel NOP receptor ligands.


Subject(s)
Narcotic Antagonists/pharmacology , Narcotics/pharmacology , Receptors, Opioid/metabolism , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Humans , Ligands , Opioid Peptides/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Opioid/agonists , Receptors, Opioid/genetics , Nociceptin Receptor
13.
Nat Commun ; 9(1): 341, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362459

ABSTRACT

G protein-independent, arrestin-dependent signaling is a paradigm that broadens the signaling scope of G protein-coupled receptors (GPCRs) beyond G proteins for numerous biological processes. However, arrestin signaling in the collective absence of functional G proteins has never been demonstrated. Here we achieve a state of "zero functional G" at the cellular level using HEK293 cells depleted by CRISPR/Cas9 technology of the Gs/q/12 families of Gα proteins, along with pertussis toxin-mediated inactivation of Gi/o. Together with HEK293 cells lacking ß-arrestins ("zero arrestin"), we systematically dissect G protein- from arrestin-driven signaling outcomes for a broad set of GPCRs. We use biochemical, biophysical, label-free whole-cell biosensing and ERK phosphorylation to identify four salient features for all receptors at "zero functional G": arrestin recruitment and internalization, but-unexpectedly-complete failure to activate ERK and whole-cell responses. These findings change our understanding of how GPCRs function and in particular of how they activate ERK1/2.


Subject(s)
GTP-Binding Proteins/genetics , MAP Kinase Signaling System , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , CRISPR-Cas Systems , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Proteins/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Phosphorylation , Signal Transduction , beta-Arrestins/metabolism
14.
Angew Chem Int Ed Engl ; 57(3): 836-840, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29194875

ABSTRACT

The cyclic depsipeptide FR900359 (FR), isolated from the tropical plant Ardisia crenata, is a strong and selective inhibitor of Gq proteins, making it an indispensable pharmacological tool to study Gq-related processes, as well as a promising drug candidate. Gq inhibition is a novel mode of action for defense chemicals and crucial for the ecological function of FR, as shown by in vivo experiments in mice, its affinity to insect Gq proteins, and insect toxicity studies. The uncultured endosymbiont of A. crenata was sequenced, revealing the FR nonribosomal peptide synthetase (frs) gene cluster. We here provide a detailed model of FR biosynthesis, supported by in vitro enzymatic and bioinformatic studies, and the novel analogue AC-1, which demonstrates the flexibility of the FR starter condensation domains. Finally, expression of the frs genes in E. coli led to heterologous FR production in a cultivable, bacterial host for the first time.


Subject(s)
Depsipeptides/biosynthesis , Depsipeptides/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Insect Proteins/metabolism , Signal Transduction/drug effects , Animals , Bombyx/metabolism , Chromosomes, Artificial, Bacterial , Computational Biology , Depsipeptides/metabolism , Escherichia coli/genetics , Gene Transfer Techniques , HEK293 Cells , Humans , Multigene Family , Peptide Synthases/genetics , Primulaceae/chemistry , Sf9 Cells , Tandem Mass Spectrometry
15.
Pharmacol Res Perspect ; 5(4)2017 Aug.
Article in English | MEDLINE | ID: mdl-28805972

ABSTRACT

Nociceptin/orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP), a member of the opioid receptor family. We recently identified a new high affinity and highly selective NOP agonist AT-403. In this study, we characterized the functional profile of AT-403 and compared it to other known nonpeptide NOP agonists Ro 65-6570, Ro 2q, SCH-221510, MCOPPB, AT-202 and SCH-486757, using the following assays: GTPγ[35 S] stimulated binding, calcium mobilization assay in cells-expressing human NOP or classical opioid receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, and the electrically stimulated mouse vas deferens bioassay. All compounds behaved as NOP full agonists consistently showing the following rank order of potency MCOPPB > AT-403 > Ro 65-6570 = Ro 2q > SCH-221510 >  AT-202 > SCH-486757. AT-403 and MCOPPB displayed the highest NOP selectivity both at human and murine receptors. Interestingly, while all the other nonpeptide NOP agonists displayed bias toward G protein-mediated signaling in the BRET assay, AT-403, similar to the natural ligand N/OFQ, behaved as an unbiased agonist, activating G-protein-mediated function as well as arrestin recruitment. AT-403 may be a useful nonpeptide tool compound to study the pharmacology of NOP activation in disease states.

16.
Eur J Pharmacol ; 794: 115-126, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27871910

ABSTRACT

An innovative chemical strategy named peptide welding technology (PWT) has been developed for the facile synthesis of tetrabranched peptides. [Dmt1]N/OFQ(1-13)-NH2 acts as a universal agonist for nociceptin/orphanin FQ (N/OFQ) and classical opioid receptors. The present study investigated the pharmacological profile of the PWT derivative of [Dmt1]N/OFQ(1-13)NH2 (PWT2-[Dmt1]) in several assays in vitro and in vivo after spinal administration in monkeys subjected to the tail withdrawal assay. PWT2-[Dmt1] mimicked the effects of [Dmt1]N/OFQ(1-13)-NH2 displaying full agonist activity, similar affinity/potency and selectivity at human recombinant N/OFQ (NOP) and opioid receptors in receptor binding, stimulation of [35S]GTPγS binding, calcium mobilization in cells expressing chimeric G proteins, and BRET studies for measuring receptor/G-protein and receptor/ß-arrestin 2 interaction. In vivo in monkeys PWT2-[Dmt1] elicited dose-dependent and robust antinociceptive effects being more potent and longer lasting than [Dmt1]N/OFQ(1-13)-NH2. The analgesic action of PWT2-[Dmt1] was sensitive to the NOP receptor antagonist J-113397, but not naltrexone. Thus, the present study demonstrated that the tetrabranched derivative of [Dmt1]N/OFQ(1-13)-NH2 obtained with the PWT technology maintains the in vitro pharmacological profile of the parent peptide but displays higher potency and longer lasting action in vivo.


Subject(s)
Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Receptors, Opioid/agonists , Animals , CHO Cells , Chemistry Techniques, Synthetic , Cricetinae , Cricetulus , Female , Humans , Macaca mulatta , Male , Oligopeptides/chemistry , Recombinant Proteins/metabolism , Nociceptin Receptor
17.
Eur J Pharmacol ; 793: 1-13, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27780725

ABSTRACT

Nociceptin/Orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP). In this study novel nonpeptide NOP ligands were characterized in vitro in receptor binding and [35S]GTPγS stimulated binding in membranes of cells expressing human NOP and classical opioid receptors, calcium mobilization assay in cells coexpressing the receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, the electrically stimulated mouse vas deferens and the mouse colon bioassays. The action of the AT compounds were compared with standard NOP agonists (N/OFQ and Ro 65-6570) and the NOP selective antagonist SB-612111. AT compounds displayed high NOP affinity and behaved as NOP agonists in all the functional assays consistently showing the following rank order of potency AT-127≥AT-090≥AT-035>AT-004= AT-001. AT compounds behaved as NOP full agonists in the calcium mobilization and mouse colon assays and as partial agonists in the [35S]GTPγS and BRET assays. Interestingly AT-090 and AT-127, contrary to standard nonpeptide agonists that display G protein biased agonism, behaved as an unbiased agonists. AT-090 and AT-127 displayed higher NOP selectivity than Ro 65-6570 at native mouse receptors. AT-090 and AT-127 might be useful pharmacological tools for investigating the therapeutic potential of NOP partial agonists.


Subject(s)
Cycloheptanes/pharmacology , Piperidines/pharmacology , Receptors, Opioid/agonists , Recombinant Proteins/metabolism , Animals , CHO Cells , Colon/drug effects , Colon/metabolism , Cricetinae , Cricetulus , Cycloheptanes/metabolism , HEK293 Cells , Humans , Ligands , Male , Mice , Piperidines/metabolism , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Recombinant Proteins/genetics , Vas Deferens/drug effects , Vas Deferens/metabolism , Nociceptin Receptor
18.
PLoS One ; 11(6): e0156897, 2016.
Article in English | MEDLINE | ID: mdl-27272042

ABSTRACT

INTRODUCTION: Opioid receptors are currently classified as Mu (µ), Delta (δ), Kappa (κ) plus the opioid related nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP). Despite compelling evidence for interactions and benefits of targeting more than one receptor type in producing analgesia, clinical ligands are Mu agonists. In this study we have designed a Mu-NOP agonist named DeNo. The Mu agonist component is provided by dermorphin, a peptide isolated from the skin of Phyllomedusa frogs and the NOP component by the endogenous agonist N/OFQ. METHODS: We have assessed receptor binding profile of DeNo and compared with dermorphin and N/OFQ. In a series of functional screens we have assessed the ability to (i) increase Ca2+ in cells coexpressing recombinant receptors and a the chimeric protein Gαqi5, (ii) stimulate the binding of GTPγ[35S], (iii) inhibit cAMP formation, (iv) activate MAPKinase, (v) stimulate receptor-G protein and arrestin interaction using BRET, (vi) electrically stimulated guinea pig ileum (gpI) assay and (vii) ability to produce analgesia via the intrathecal route in rats. RESULTS: DeNo bound to Mu (pKi; 9.55) and NOP (pKi; 10.22) and with reasonable selectivity. This translated to increased Ca2+ in Gαqi5 expressing cells (pEC50 Mu 7.17; NOP 9.69), increased binding of GTPγ[35S] (pEC50 Mu 7.70; NOP 9.50) and receptor-G protein interaction in BRET (pEC50 Mu 8.01; NOP 9.02). cAMP formation was inhibited and arrestin was activated (pEC50 Mu 6.36; NOP 8.19). For MAPK DeNo activated p38 and ERK1/2 at Mu but only ERK1/2 at NOP. In the gpI DeNO inhibited electrically-evoked contractions (pEC50 8.63) that was sensitive to both Mu and NOP antagonists. DeNo was antinociceptive in rats. CONCLUSION: Collectively these data validate the strategy used to create a novel bivalent Mu-NOP peptide agonist by combining dermorphin (Mu) and N/OFQ (NOP). This molecule behaves essentially as the parent compounds in vitro. In the antonocicoeptive assays employed in this study DeNo displays only weak antinociceptive properties.


Subject(s)
Opioid Peptides/chemistry , Peptides/chemical synthesis , Receptors, Opioid, mu/agonists , Receptors, Opioid/agonists , Animals , CHO Cells , Calcium/metabolism , Cricetulus , Guinea Pigs , HEK293 Cells , Humans , Male , Peptides/chemistry , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid/chemistry , Receptors, Opioid/metabolism , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/metabolism , Nociceptin Receptor
19.
Pharmacol Res Perspect ; 4(4): e00247, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28116100

ABSTRACT

The aim of the study was to investigate the in vitro and in vivo pharmacological profile of cebranopadol, a novel agonist for opioid and nociceptin/orphanin FQ (N/OFQ) receptors (NOP). In vitro cebranopadol was assayed in calcium mobilization studies in cells coexpressing NOP or opioid receptors and chimeric G-proteins and in a bioluminescence resonance energy transfer (BRET) assay for studying receptor interaction with G-protein and ß-arrestin 2. The mouse tail withdrawal and formalin tests were used for investigating cebranopadol antinociceptive properties. In calcium mobilization studies cebranopadol showed the following rank order of potency NOP = mu > kappa ≥ delta. In BRET studies, cebranopadol promoted NOP and mu receptors interaction with G-protein with similar high potency and efficacy. However, cebranopadol did not stimulated NOP-ß-arrestin 2 interactions and displayed reduced potency at mu/ß-arrestin 2. In vivo, cebranopadol exhibits highly potent and extremely long-lasting antinociceptive effects. The effects of cebranopadol in the tail withdrawal assay were sensitive to both SB-612111 and naloxone. Collectively the present results confirm and extend previous finding demonstrating that cebranopadol, by acting as mixed NOP/opioid receptor agonist, elicits robust analgesic effects in different pain models.

20.
Structure ; 23(12): 2291-2299, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26526853

ABSTRACT

Understanding the mechanism by which ligands affect receptor conformational equilibria is key in accelerating membrane protein structural biology. In the case of G protein-coupled receptors (GPCRs), we currently pursue a brute-force approach for identifying ligands that stabilize receptors and facilitate crystallogenesis. The nociceptin/orphanin FQ peptide receptor (NOP) is a member of the opioid receptor subfamily of GPCRs for which many structurally diverse ligands are available for screening. We observed that antagonist potency is correlated with a ligand's ability to induce receptor stability (Tm) and crystallogenesis. Using this screening strategy, we solved two structures of NOP in complex with top candidate ligands SB-612111 and C-35. Docking studies indicate that while potent, stabilizing antagonists strongly favor a single binding orientation, less potent ligands can adopt multiple binding modes, contributing to their low Tm values. These results suggest a mechanism for ligand-aided crystallogenesis whereby potent antagonists stabilize a single ligand-receptor conformational pair.


Subject(s)
Receptors, Opioid/chemistry , Amino Acid Sequence , Binding Sites , Cycloheptanes/pharmacology , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Molecular Sequence Data , Piperidines/pharmacology , Protein Binding , Receptors, Opioid/metabolism , Nociceptin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...