Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 12: 737195, 2021.
Article in English | MEDLINE | ID: mdl-34675870

ABSTRACT

In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.

2.
Mov Disord ; 36(11): 2605-2614, 2021 11.
Article in English | MEDLINE | ID: mdl-34236731

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by aggregated α-synuclein (α-syn) in oligodendrocytes and accompanied by striatonigral and olivopontocerebellar degeneration and motor symptoms. Key features of MSA are replicated in the PLP-α-syn transgenic mouse, including progressive striatonigral degeneration and motor deterioration. There are currently no approved treatments for MSA. ATH434 is a novel, orally bioavailable brain penetrant small molecule inhibitor of α-syn aggregation. OBJECTIVES: To characterize ATH434 for disease modification in a mouse model of MSA. METHODS: Six-month-old PLP-α-syn mice (MSA mice) were ATH434-treated (ATH434 in food) or untreated (normal food) for 6 months. Motor behavior and numbers of nigral and striatal neurons were evaluated. α-syn aggregates and oligomers were quantified by immunohistochemical and western blot analyses. Microglial activation and neuroinflammation were assessed by histological and molecular analyses. Ferric iron in the Substantia nigra was evaluated with the Perls method. RESULTS: ATH434-treated mice demonstrated preservation of motor performance in MSA mice that was associated with neuroprotection of nigral and striatal neurons. The rescue of the phenotype correlated with the reduction of α-syn inclusions and oligomers in animals receiving ATH434. ATH434-treated mice exhibited significantly increased lysosomal activity of microglia without increased pro-inflammatory markers, suggesting a role in α-syn clearing. ATH434-treatment was associated with lower intracellular nigral iron levels. CONCLUSIONS: Our findings demonstrate the beneficial disease-modifying effect of ATH434 in oligodendroglial α-synucleinopathy on both the motor phenotype and neurodegenerative pathology in the PLP-α-syn transgenic mouse and support the development of ATH434 for MSA. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Multiple System Atrophy/drug therapy , Oligodendroglia/pathology , alpha-Synuclein/genetics , alpha-Synuclein/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...