Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1996): 20230055, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37015273

ABSTRACT

Community diversity can reduce the prevalence and spread of disease, but certain species may play a disproportionate role in diluting or amplifying pathogens. Flowers act as both sources of nutrition and sites of pathogen transmission, but the effects of specific plant species in shaping bee disease dynamics are not well understood. We evaluated whether plantings of sunflower (Helianthus annuus), whose pollen reduces infection by some pathogens when fed to bees in captivity, lowered pathogen levels and increased reproduction in free-foraging bumblebee colonies (Bombus impatiens). Sunflower abundance reduced the prevalence of a common gut pathogen, Crithidia bombi, and reduced infection intensity, with an order of magnitude lower infection intensity at high sunflower sites compared with sites with little to no sunflower. Sunflower abundance was also positively associated with greater queen production in colonies. Sunflower did not affect prevalence of other detected pathogens. This work demonstrates that a single plant species can drive disease dynamics in foraging B. impatiens, and that sunflower plantings can be used as a tool for mitigating a prevalent pathogen while also increasing reproduction of an agriculturally important bee species.


Subject(s)
Helianthus , Bees , Animals , Flowers , Pollen , Plants , Crithidia
2.
Environ Entomol ; 52(3): 480-490, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-36961107

ABSTRACT

Foraging preferences are known to differ among bee taxa, and can also differ between male and female bees of the same species. Similarly, bees can prefer a specific flower sex, particularly if only one sex provides pollen. Such variation in foraging preferences could lead to divergent bee communities visiting different flower sexes of a plant species. We sampled bees visiting sunflowers to characterize bee species richness, abundance, and sex ratios on pollen-fertile and pollen-sterile cultivars. We asked whether female or male bees were more abundant on sunflowers, whether female bees were more abundant on pollen-fertile or pollen-sterile cultivars, and whether pollen presence predicted the sex of sampled bees. We further asked whether the bee community differed between pollen-fertile and pollen-sterile cultivars. Females of most bee species were more abundant on sunflowers compared to males, and females were usually more abundant on pollen-fertile cultivars. In three bee species, pollen presence was predictive of a bee's sex, with females more abundant on pollen-fertile cultivars than males. Further, the bee community differed significantly between pollen-fertile and pollen-sterile cultivars, with two bee species functioning as indicators for pollen-fertile sunflowers. Our results demonstrate that a bee's sex shapes foraging associations on sunflowers and influences abundance between pollen-fertile and pollen-sterile cultivars, and that pollen-fertile and pollen-sterile cultivars are visited by different bee communities. Bee sexes and flower pollen presence may be under-appreciated factors shaping pollination services in both agricultural and natural ecosystems, and could be important considerations for pollination of crops with pollen-fertile and pollen-sterile flowers.


Subject(s)
Asteraceae , Helianthus , Female , Male , Bees , Animals , Ecosystem , Pollen , Flowers , Pollination , Crops, Agricultural
3.
J Econ Entomol ; 116(1): 68-77, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36573405

ABSTRACT

Landscapes can affect parasite epidemiology in wild and agricultural animals. Honey bees are threatened by loss of floral resources and by parasites, principally the mite Varroa destructor and the viruses it vectors. Existing mite control relies heavily on chemical treatments that can adversely affect bees. Alternative, pesticide-free control methods are needed to mitigate infestation with these ectoparasites. Many flowering plants provide nectar and pollen that confer resistance to parasites. Enrichment of landscapes with antiparasitic floral resources could therefore provide a sustainable means of parasite control in pollinators. Floral rewards of Asteraceae plants can reduce parasitic infection in diverse bee species, including honey and bumble bees. Here, we tested the effects of sunflower (Helianthus annuus) cropland and pollen supplementation on honey bee resistance to macro- and microparasites. Although sunflower had nonsignificant effects on microparasites, We found that increased sunflower pollen availability correlated with reduced Varroa mite infestation in landscapes and pollen-supplemented colonies. At the landscape level, each doubling of sunflower crop area was associated with a 28% reduction in mite infestation. In field trials, late-summer supplementation of colonies with sunflower pollen reduced mite infestation by 2.75-fold relative to artificial pollen. United States sunflower crop acreage has declined by 2% per year since 1980, however, suggesting reduced availability of this floral resource. Although further research is needed to determine whether the observed effects represent direct inhibition of mite fecundity or mite-limiting reductions in honey bee brood-rearing, our findings suggest the potential for sunflower plantings or pollen supplements to counteract a major driver of honey bee losses worldwide.


Subject(s)
Asteraceae , Helianthus , Honey , Mite Infestations , Varroidae , Animals , Bees , Varroidae/physiology , Mite Infestations/prevention & control , Mite Infestations/veterinary , Mite Infestations/parasitology
4.
Ecology ; 103(1): e03560, 2022 01.
Article in English | MEDLINE | ID: mdl-34657285

ABSTRACT

Conditions experienced early in development can affect the future performance of individuals and populations. Demographic theories predict persistent population impacts of past resources, but few studies have experimentally tested such carry-over effects across generations or cohorts. We used bumble bees to test whether resource timing had persistent effects on within-colony dynamics over sequential cohorts of workers. We simulated a resource pulse for field colonies either early or late in their development and estimated colony growth rates during pulse- and non-pulse periods. During periods when resources were not supplemented, early-pulse colonies grew faster than late-pulse colonies; early-pulse colonies grew larger as a result. These results revealed persistent effects of past resources on current growth and support the importance of transient dynamics in natural ecological systems. Early-pulse colonies also produced more queen offspring, highlighting the critical nature of resource timing for the population, as well as colony, dynamics of a key pollinator.


Subject(s)
Ecosystem , Animals , Bees
5.
Ecol Evol ; 11(6): 2814-2827, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767838

ABSTRACT

Behavior and organization of social groups is thought to be vital to the functioning of societies, yet the contributions of various roles within social groups toward population growth and dynamics have been difficult to quantify. A common approach to quantifying these role-based contributions is evaluating the number of individuals conducting certain roles, which ignores how behavior might scale up to effects at the population-level. Manipulative experiments are another common approach to determine population-level effects, but they often ignore potential feedbacks associated with these various roles.Here, we evaluate the effects of worker size distribution in bumblebee colonies on worker production in 24 observational colonies across three environments, using functional linear models. Functional linear models are an underused correlative technique that has been used to assess lag effects of environmental drivers on plant performance. We demonstrate potential applications of this technique for exploring high-dimensional ecological systems, such as the contributions of individuals with different traits to colony dynamics.We found that more larger workers had mostly positive effects and more smaller workers had negative effects on worker production. Most of these effects were only detected under low or fluctuating resource environments suggesting that the advantage of colonies with larger-bodied workers becomes more apparent under stressful conditions.We also demonstrate the wider ecological application of functional linear models. We highlight the advantages and limitations when considering these models, and how they are a valuable complement to many of these performance-based and manipulative experiments.

6.
J Chem Ecol ; 46(8): 649-658, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32206946

ABSTRACT

Many pollinator species are declining due to a variety of interacting stressors including pathogens, sparking interest in understanding factors that could mitigate these outcomes. Diet can affect host-pathogen interactions by changing nutritional reserves or providing bioactive secondary chemicals. Recent work found that sunflower pollen (Helianthus annuus) dramatically reduced cell counts of the gut pathogen Crithidia bombi in bumble bee workers (Bombus impatiens), but the mechanism underlying this effect is unknown. Here we analyzed methanolic extracts of sunflower pollen by LC-MS and identified triscoumaroyl spermidines as the major secondary metabolite components, along with a flavonoid quercetin-3-O-hexoside and a quercetin-3-O-(6-O-malonyl)-hexoside. We then tested the effect of triscoumaroyl spermidine and rutin (as a proxy for quercetin glycosides) on Crithidia infection in B. impatiens, compared to buckwheat pollen (Fagopyrum esculentum) as a negative control and sunflower pollen as a positive control. In addition, we tested the effect of nine fatty acids from sunflower pollen individually and in combination using similar methods. Although sunflower pollen consistently reduced Crithidia relative to control pollen, none of the compounds we tested had significant effects. In addition, diet treatments did not affect mortality, or sucrose or pollen consumption. Thus, the mechanisms underlying the medicinal effect of sunflower are still unknown; future work could use bioactivity-guided fractionation to more efficiently target compounds of interest, and explore non-chemical mechanisms. Ultimately, identifying the mechanism underlying the effect of sunflower pollen on pathogens will open up new avenues for managing bee health.


Subject(s)
Bees/microbiology , Crithidia/physiology , Glycosides/chemistry , Helianthus/chemistry , Host-Pathogen Interactions , Pollen/chemistry , Animals , Crithidia/drug effects , Fagopyrum/chemistry , Gastrointestinal Microbiome/drug effects , Plant Extracts/chemistry , Secondary Metabolism
7.
Oecologia ; 191(2): 377-388, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31486888

ABSTRACT

The temporal distribution of resources is an important aspect of habitat quality that can substantially impact population success. Although it is widely accepted that floral resources directly influence wild bee population sizes, we lack experimental data evaluating how resource availability affects colony growth via demographic mechanisms. To achieve this, we tracked marked individuals in bumble bee (Bombus vosnesenskii) colonies to evaluate whether worker survival and reproduction responded to experimentally elevated forage early in colony development. Specifically, we assessed the effect of early resource environment on worker and sexual offspring production, and the survival and body size of individual workers. We also assessed whether responses of colonies differed when exposed to higher or lower resource environments at a relatively smaller (~ 10 workers) or larger (~ 20 workers) size. Resource supplementation always resulted in greater total offspring and male production; however, the influence of supplementation on worker production and quality depended on colony size at the start of supplementation. Among colonies that were initially smaller, colonies that were supplemented produced fewer but larger bodied and longer lived workers compared to control counterparts. Among colonies that were initially larger, colonies that were supplemented produced more workers than corresponding controls, but without changes to worker quality. Collectively, these results provide clear experimental evidence that greater resource availability early in colony development increases overall productivity, and indicate that colonies may pursue different allocation strategies in response to the resource environment, investing in more or better workers.


Subject(s)
Ecosystem , Reproduction , Animals , Bees , Body Size , Male , Population Density , Seasons
8.
Oecologia ; 178(4): 1017-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25795253

ABSTRACT

Endoparasitoids develop inside the body of a host organism and, if successful, eventually kill their host in order to reach maturity. Host species can vary in their suitability for a developing endoparasitoid; in particular, the host immune response, which can suppress egg hatching and larval development, has been hypothesized to be one of the most important determinants of parasitoid host range. In this study, we investigated whether three bumblebee host species (Bombus bimaculatus, Bombus griseocollis, and Bombus impatiens) varied in their suitability for the development of a shared parasitoid, the conopid fly (Conopidae, Diptera) and whether the intensity of host encapsulation response, an insect immune defense against invaders, could predict parasitoid success. When surgically implanted with a nylon filament, B. griseocollis exhibited a stronger immune response than both B. impatiens and B. bimaculatus. Similarly, B. griseocollis was more likely to melanize conopid larvae from natural infections and more likely to kill conopids prior to its own death. Our results indicate that variation in the strength of the general immune response of insects may have ecological implications for sympatric species that share parasites. We suggest that, in this system, selection for a stronger immune response may be heightened by the pattern of phenological overlap between local host species and the population peak of their most prominent parasitoid.


Subject(s)
Bees/parasitology , Diptera/growth & development , Immunity , Larva/growth & development , Parasites/growth & development , Animals , Bees/immunology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...