Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(12): e12406, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36582695

ABSTRACT

The number and diversity of drugs in the tuberculosis (TB) drug development process has increased over the years, yet the attrition rate remains very high, signaling the need for continued research in drug discovery. In this study, crude secondary metabolites from marine fungi associated with ascidians collected from Saldanha and False Bays (South Africa) were investigated for antimycobacterial activity. Isolation of fungi was performed by sectioning thin inner-tissues of ascidians and spreading them over potato dextrose agar (PDA). Solid state fermentation of fungal isolates on PDA was then performed for 28 days to allow production of secondary metabolites. Afterwards, PDA cultures were dried and solid-liquid extraction using methanol was performed to extract fungal metabolites. Profiling of metabolites was performed using untargeted liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The broth microdilution method was used to determine antimycobacterial activity against Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv, while in silico flexible docking was performed on selected target proteins from M. tuberculosis. A total of 16 ascidians were sampled and 46 fungi were isolated. Only 32 fungal isolates were sequenced, and their sequences submitted to GenBank to obtain accession numbers. Metabolite profiling of 6 selected fungal extracts resulted in the identification of 65 metabolites. The most interesting extract was that of Clonostachys rogersoniana MGK33 which inhibited Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv growth with minimum inhibitory concentrations (MICs) of 0.125 and 0.2 mg/mL, respectively. These results were in accordance with those from in silico molecular docking studies which showed that bionectin F produced by C. rogersoniana MGK33 is a potential inhibitor of M. tuberculosis ß-ketoacyl-acyl carrier protein reductase (MabA, PDB ID = 1UZN), with the docking score observed as -11.17 kcal/mol. These findings provided evidence to conclude that metabolites from marine-derived fungi are potential sources of bioactive metabolites with antimycobacterial activity. Even though in silico studies showed that bionectin F is a potent inhibitor of an essential enzyme, MabA, the results should be validated by performing purification of bionectin F from C. rogersoniana MGK33 and in vitro assays against MabA and whole cells (M. tuberculosis).

2.
Anticancer Agents Med Chem ; 18(3): 394-400, 2018.
Article in English | MEDLINE | ID: mdl-28530542

ABSTRACT

BACKGROUND: A broad range of metal-coordinated complexes have been studied for their anticancer activities. However, some of these complexes display high toxicity profiles to non-malignant cells, therefore limiting their use in cancer therapeutics. Aims/Method: Several silver(I) triphenylphosphine adducts were prepared as 1:1 to 1:4 ratios of silver nitrate to triphenylphosphine. They were further used to determine their anticancer activity in a malignant SNO esophageal cell line. The silver(I) phosphine adducts include: [Ag(PPh3)]NO3 (1); [Ag(PPh3)2]NO3 (2); [Ag(PPh3)3]NO3 (3) and [Ag(PPh3)4]NO3 (4). In addition, the activity of complexes 1-4 was compared to previously reported complexes [Ag(Ph2P(CH2)2PPh2)2]NO3 (5) and [Ag(Ph2P(CH2)3PPh2)2]NO3 (6). The cytotoxicity of complexes 1-6 was also evaluated in non-malignant human dermal fibroblast cells (HDF-a). RESULTS: The majority of the complexes (specifically those containing PPh3) were found to be highly toxic to the SNO cells and less toxic towards HDF-a cells, as determined by the alamarBlue® assay. Morphological studies and flow cytometry confirmed that the silver(I) complexes induced apoptosis in the malignant cells. CONCLUSION: These results may have an impact on research related to drug discovery and silver(I) phosphine complexes could be added to the arsenal of anticancer agents in addition to the silver-bis-diphenylphosphinoethane and silver-bis-diphenylphosphinopropane adducts.


Subject(s)
Coordination Complexes/pharmacology , Esophageal Neoplasms/drug therapy , Phosphines/pharmacology , Silver/pharmacology , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esophageal Neoplasms/pathology , Humans , Molecular Structure , Phosphines/chemistry , Silver/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
3.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 4): m510, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22589862

ABSTRACT

The title compound, trans-[RhCl(C(18)H(14)BrP)(2)(CO)], has a slightly disordered square-planar geometry with the Rh ion(I) situated on an inversion the centre and carbon-yl-chloride disorder observed as a result of the crystallographic inversion symmetry. Selected geometric parameters include: Rh-P = 2.3430 (8) Å, Rh-Cl = 2.434 (3) Å, Rh-C = 1.722 (8) Å, P-Rh-P = 180.00 (3)°, P-Rh-Cl = 95.40 (7)°, 84.60 (7)° and Rh-C-O = 177.9 (8)°.

SELECTION OF CITATIONS
SEARCH DETAIL
...