Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(46): 44287-44311, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38027360

ABSTRACT

The aurora kinase is a key enzyme that is implicated in tumor growth. Research revealed that small molecules that target aurora kinase have beneficial effects as anticancer agents. In the present study, in order to identify potential antibreast cancer agents with aurora kinase inhibitory activity, we employed QSARINS software to perform the quantitative structure-activity relationship (QSAR). The statistical values resulted from the study include R2 = 0.8902, CCCtr = 0.7580, Q2 LOO = 0.7875, Q2LMO = 0.7624, CCCcv = 0.7535, R2ext = 0.8735, and CCCext = 0.8783. Among the four generated models, the two best models encompass five important variables, including PSA, EstateVSA5, MoRSEP3, MATSp5, and RDFC24. The parameters including the atomic volume, atomic charges, and Sanderson's electronegativity played an important role in designing newer lead compounds. Based on the above data, we have designed six series of compounds including 1a-e, 2a-e, 3a-e, 4a-e, 5a-e, and 6a-e. All these compounds were subjected to molecular docking studies by using AutoDock v4.2.6 against the aurora kinase protein (1MQ4). Among the above 30 compounds, the 2-amino thiazole derivatives 1a, 2a, 3e, 4d, 5d, and 6d have excellent binding interactions with the active site of 1MQ4. Compound 1a had the highest docking score (-9.67) and hence was additionally subjected to molecular dynamic simulation investigations for 100 ns. The stable binding of compound 1a with 1MQ4 was verified by RMSD, RMSF, RoG, H-bond, molecular mechanics-generalized Born surface area (MM-GBSA), free binding energy calculations, and solvent-accessible surface area (SASA) analyses. Furthermore, newly designed compound 1a exhibited excellent ADMET properties. Based on the above findings, we propose that the designed compound 1a may be utilized as the best theoretical lead for future experimental research of selective inhibition of aurora kinase, therefore assisting in the creation of new antibreast cancer drugs.

2.
ACS Omega ; 8(16): 14799-14813, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125119

ABSTRACT

Natural-product-based pharmacophores possess considerably more structural diversity, attractive physicochemical features, and relatively less toxicity than synthesized drug entities. In this context, our studies on phaeanthine, a bisbenzylisoquinoline alkaloid isolated from the rhizomes of Cyclea peltata (Lam) Hook.f & Thoms., showed selective cytotoxicity toward cervical cancer cells (HeLa) with an IC50 of 8.11 ± 0.04 µM. Subsequent investigation with in silico molecular docking of phaeanthine displayed preferential binding to the antiapoptotic protein Akt as reflected by a docking score of -5.023. Interestingly, the follow-up in vitro assessment of the compound correlated with mitochondria-mediated apoptosis specifically by downregulating the expression of Akt and p-Akt, including other antiapoptotic proteins MCl-1, IGF-2, and XIAP. In the complementary in vitro assessment, mitochondrial membrane polarization and dynamics of intercellular cytochrome c validated the intrinsic mechanism of the apoptotic phenomenon. To the best of our knowledge, this is the first comprehensive anticancer profiling study of phaeanthine against HeLa cells.

3.
Int J Biol Macromol ; 242(Pt 1): 124443, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148943

ABSTRACT

As the world undergone unpreceded time of tragedy with the corona virus, many researchers have raised to showcase their scientific contributions in terms of novel configured anti-viral drugs until now. Herein, we designed pyrimidine based nucleotides and assessed for the binding capability with SARS-CoV-2 viral replication targets of nsp12 RNA-dependent RNA polymerase and Mpro main protease. Molecular docking studies showed all the designed compounds to possess good binding affinity, with a few compounds which outperforms the control drug remdesivir GS-5743 and its active form GS-441524. Further molecular dynamics simulation studies confirmed their stability and preservation of the non-covalent interactions. Based on the present findings Ligand2-BzV_0Tyr, ligand3-BzV_0Ura, and ligand5-EeV_0Tyr showed good binding affinity with Mpro, whereas, ligand1-BzV_0Cys and Ligand2-BzV_0Tyr showed good binding affinity with RdRp, thus could act as potential lead compounds against SARS-CoV-2, which needs further validation studies. In particular, Ligand2-BzV_0Tyr could be more beneficial candidate with the dual target specificity for Mpro and RdRp.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , COVID-19 Drug Treatment , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/genetics , Molecular Dynamics Simulation , Pyrimidines/pharmacology
4.
Struct Chem ; : 1-20, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36320317

ABSTRACT

Presently, the prime global focus is on SARS-CoV-2, as no fully established, licensed medicine has been found thus far, in spite of the existence of various reports and administration of partially proven certain class of natural products. However, in case of natural products, the extraction and purification limit their application. This situation drives researchers to explore synthetically viable drugs. In the present investigation, twenty-three 2-pyridone synthetic derivatives (P1-P23) have been theoretically tested for their suitability as potential inhibitors for COVID-19 main protease through DFT, molecular docking, and molecular dynamics simulations. DFT calculations offer insights into structure-property relationships, while ADMET studies indicate the pharmacological characteristics of these molecules. Molecular docking studies ascertain the nature and mode of interactions of these entities with COVID-19 main protease. Furthermore, covalent docking has been carried out to verify the feasibility of the formation of a covalent bond with the active site. The top protein-inhibitor complexes, such as P18, P11, and P12, were identified based on their glide score. These molecules, along with the covalent docked complexes, namely P18 and P16, were selected and subjected to molecular dynamics simulations. The 100 ns simulation process exhibited that the covalent docked ones, due to their stable form could serve as lead compounds against SARS-CoV-2. Hence, this study affirms the potential candidature of 2-pyridone-based inhibitors.

5.
Heliyon ; 8(10): e11123, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36299526

ABSTRACT

Acute Myeloid Leukemia (AML) is a heterogeneous disease with highest mortality compared to other types of leukemia. There is a need to find the gene abnormalities and mechanisms behind them due to their heterogenic nature. The present study is aimed to understand genes, pathways and biomarker proteins influenced by transcriptomic deregulation due to AML. Differentially expressed gene (DEG), protein-protein interaction network, gene ontology, KEGG pathway, variant analysis and secretome analyses were performed using different AML RNAseq datasets. A total of 655 DEGs including 291 up-regulated and 364 down-regulated genes, which were satisfied with a fold change of 1.5 were identified. Top hub genes for AML were identified as TP53, PTPRC and AKT1. This integrative bioinformatics approach revealed the deregulation of T Cell Receptor (TCR) pathway and altered immune response related genes. The survival analysis revealed the associated deregulation of multiple TCR pathway related genes. Variant analysis identified the benign and likely benign nature of many important target genes and markers screened, which were found to have an important role in the progression of AML. DEGs and secretome analysis found out a set of seven molecules represents potential biomarkers for AML. In vitro analytical validation showed overexpression pattern of CD109 and LRP12 in AML cell line and HL-60 cells than the normal human bone marrow-derived stromal cell line HS-5. Here we report first time for CD109 and LRP12 as a possible biomarkers for the diagnostic significance. Amino acid substitutions detected by variant analysis and deregulation of immune checkpoint molecules revealed their role in reducing immune response and inability to fight cancer cells. In conclusion, this study highlights the possibility of new biomarkers for AML and the mechanism of decrease in immune response due to the downregulation of co-stimulatory immune molecules, which needs further clinical validation investigations.

6.
Proteins ; 90(9): 1699-1713, 2022 09.
Article in English | MEDLINE | ID: mdl-35429048

ABSTRACT

Myeloid cell leukemia-1 (MCL1), an anti-apoptotic BCL-2 family protein plays a major role in the control of apoptosis as the regulator of mitochondrial permeability which is deregulated in various solid and hematological malignancies. Interaction of the executioner proteins Bak/Bax with anti-apoptotic MCL1 and its cellular composition determines the apoptotic or survival pathway. Mutations act at various levels in the apoptotic process and can contribute to disease. Single nucleotide polymorphism (SNP) in MCL1 gene was focused as they result in changes in the amino acid sequence and have been associated with tumorigenesis. This study highlighted the deleterious MCL1-Bax stabilizing effect of the mutation V220F on MCL1 structure through computational protein-protein interaction predictions and molecular dynamics simulations. The single point mutation at V220F was selected as it is residing at the hydrophobic core region of BH3 conserved domain, the site of Bax binding. The molecular dynamics simulation studies showed increase in stability of the mutated MCL1 before and after Bax binding comparable with the native MCL1. The clusters from free energy landscape found out structural variation in folding pattern with additional helix near the BH3 domain in the mutated structure. This loop to helix structural change in the mutated complex favored stable interaction of the complex and also induced Bax conformational change. Moreover, molecular mechanics-based binding free energy calculations confirmed increased affinity of Bax toward mutated MCL1. Residue-wise interaction network analysis showed the individual residues in Bax binding responsible for the change in stability and interaction due to the protein mutation. In conclusion, the overall findings from the study reveal that the presence of V220F mutation on MCL1 is responsible for the structural confirmational change leading to disruption of its biological functions which might be responsible for tumorigenesis. The mutation could possibly be used as future diagnostic markers in treating cancers.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein , bcl-2-Associated X Protein , Apoptosis/genetics , Carcinogenesis , Cell Survival , Humans , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics
7.
Comput Biol Chem ; 73: 85-94, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29471264

ABSTRACT

Myocardial fibrosis reside a common pathological feature in hypertrophic and dilated cardiomyopathy that results in ventricular dysfunction leading to heart failure. Though several studies reported the role of fibrosis in cardiac diseases, their pathologic mechanisms leading to heart failure remains unclear. A few studies have proposed integrated analysis of microarray information and protein-protein interaction (PPI) systems to discover subnetwork markers related to diagnosis and prognosis of the disease. In addition to PPI networks, we incorporated miRNAs and transcription factors to find the putative miRNAs and transcription factors that might regulate the pathological process and progression of cardiomyopathy and their further progression to heart failure. The important submodules from network revealed the significance of Small Leucine Rich Proteoglycans (SLRPs), Extracellular matrix (ECM) related proteins and complement system in fibrosis. Sequence analysis of different SLRPs suggest that Keratocan and Fibromodulin possesses the same collagen binding site. A predicted mechanism of TGFß1 shows the involvement of different pathway of HCM and DCM in progression of heart failure.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Hypertrophic/genetics , Fibrosis/genetics , Heart Failure/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Fibrosis/metabolism , Heart Failure/metabolism , Humans , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...