Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 433(7): 166846, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33549587

ABSTRACT

Chromosome ends are protected by guanosine-rich telomere DNA that forms stable G-quadruplex (G4) structures. The heterodimeric POT1-TPP1 complex interacts specifically with telomere DNA to shield it from illicit DNA damage repair and to resolve secondary structure that impedes telomere extension. The mechanism by which POT1-TPP1 accomplishes these tasks is poorly understood. Here, we establish the kinetic framework for POT1-TPP1 binding and unfolding of telomere G4 DNA. Our data identify two modes of POT1-TPP1 destabilization of G4 DNA that are governed by protein concentration. At low concentrations, POT1-TPP1 passively captures transiently unfolded G4s. At higher concentrations, POT1-TPP1 proteins bind to G4s to actively destabilize the DNA structures. Cancer-associated POT1-TPP1 mutations impair multiple reaction steps in this process, resulting in less efficient destabilization of G4 structures. The mechanistic insight highlights the importance of cell cycle dependent expression and localization of the POT1-TPP1 complex and distinguishes diverse functions of this complex in telomere maintenance.


Subject(s)
Aminopeptidases/genetics , G-Quadruplexes , Serine Proteases/genetics , Telomere-Binding Proteins/genetics , Telomere/genetics , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Mutation/genetics , Protein Binding/genetics , Protein Conformation , Protein Structure, Secondary/genetics , Shelterin Complex , Telomerase/genetics
2.
Sci Rep ; 9(1): 16278, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700156

ABSTRACT

Pseudouridine (Ψ) is the most common chemical modification present in RNA. In general, Ψ increases the thermodynamic stability of RNA. However, the degree of stabilization depends on the sequence and structural context. To explain experimentally observed sequence dependence of the effect of Ψ on the thermodynamic stability of RNA duplexes, we investigated the structure, dynamics and hydration of RNA duplexes with an internal Ψ-A base pair in different nearest-neighbor sequence contexts. The structures of two RNA duplexes containing 5'-GΨC/3'-CAG and 5'-CΨG/3'-GAC motifs were determined using NMR spectroscopy. To gain insight into the effect of Ψ on duplex dynamics and hydration, we performed molecular dynamics (MD) simulations of RNA duplexes with 5'-GΨC/3'-CAG, 5'-CΨG/3'-GAC, 5'-AΨU/3'-UAA and 5'-UΨA/3'-AAU motifs and their unmodified counterparts. Our results showed a subtle impact from Ψ modification on the structure and dynamics of the RNA duplexes studied. The MD simulations confirmed the change in hydration pattern when U is replaced with Ψ. Quantum chemical calculations showed that the replacement of U with Ψ affected the intrinsic stacking energies at the base pair steps depending on the sequence context. The calculated intrinsic stacking energies help to explain the experimentally observed sequence dependent changes in the duplex stability from Ψ modification.


Subject(s)
Adenosine/chemistry , Base Pairing , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Pseudouridine/chemistry , RNA/chemistry , Molecular Dynamics Simulation , Molecular Structure
3.
RNA ; 25(1): 121-134, 2019 01.
Article in English | MEDLINE | ID: mdl-30341177

ABSTRACT

Uridine tetrads (U-tetrads) are a structural element encountered in RNA G-quadruplexes, for example, in the structures formed by the biologically relevant human telomeric repeat RNA. For these molecules, an unexpectedly strong stabilizing influence of a U-tetrad forming at the 3' terminus of a quadruplex was reported. Here we present the high-resolution solution NMR structure of the r(UGGUGGU)4 quadruplex which, in our opinion, provides an explanation for this stabilization. Our structure features a distinctive, abrupt chain reversal just prior to the 3' uridine tetrad. Similar "reversed U-tetrads" were already observed in the crystalline phase. However, our NMR structure coupled with extensive explicit solvent molecular dynamics (MD) simulations identifies some key features of this motif that up to now remained overlooked. These include the presence of an exceptionally stable 2'OH to phosphate hydrogen bond, as well as the formation of an additional K+ binding pocket in the quadruplex groove.


Subject(s)
G-Quadruplexes , RNA Stability , RNA/chemistry , Base Sequence , Binding Sites , Cations/chemistry , Humans , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Potassium/chemistry , Scattering, Small Angle , Sodium/chemistry , Uridine/chemistry , Water/chemistry , X-Ray Diffraction
4.
Acta Biochim Pol ; 63(4): 609-621, 2016.
Article in English | MEDLINE | ID: mdl-27801425

ABSTRACT

G-quadruplexes are non-canonical secondary structures which may be formed by guanine rich sequences, both in vitro and in living cells. The number of biological functions assigned to these structural motifs has grown rapidly since the discovery of their involvement in the telomere maintenance. Knowledge of the G-quadruplexes' three-dimensional structures plays an important role in understanding of their conformational diversity, physiological functions, and in the design of novel drugs targeting the G-quadruplexes. In the last decades, structural studies have been mainly focused on the DNA G-quadruplexes. Their RNA counterparts gained an increased interest along with a still-emerging recognition of the central role of RNA in multiple cellular processes. In this review we focus on structural properties of the RNA G-quadruplexes, based on high-resolution structures available in the RCSB PDB data base and on structural models. In addition, we point out the current challenges in this field of research.


Subject(s)
G-Quadruplexes , Base Sequence , DNA/chemistry , Humans , Models, Molecular , RNA/chemistry
5.
Nucleic Acids Res ; 42(15): 10196-207, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25081212

ABSTRACT

Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K(+), Na(+) and NH4 (+) were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K(+) ions.


Subject(s)
G-Quadruplexes , RNA/chemistry , HeLa Cells , Humans , RNA Folding , Trinucleotide Repeats
6.
Nucleic Acids Res ; 42(5): 3492-501, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24369424

ABSTRACT

Thermodynamic data are reported revealing that pseudouridine (Ψ) can stabilize RNA duplexes when replacing U and forming Ψ-A, Ψ-G, Ψ-U and Ψ-C pairs. Stabilization is dependent on type of base pair, position of Ψ within the RNA duplex, and type and orientation of adjacent Watson-Crick pairs. NMR spectra demonstrate that for internal Ψ-A, Ψ-G and Ψ-U pairs, the N3 imino proton is hydrogen bonded to the opposite strand nucleotide and the N1 imino proton may also be hydrogen bonded. CD spectra show that general A-helix structure is preserved, but there is some shifting of peaks and changing of intensities. Ψ has two hydrogen donors (N1 and N3 imino protons) and two hydrogen bond acceptors because the glycosidic bond is C-C rather than C-N as in uridine. This greater structural potential may allow Ψ to behave as a kind of structurally driven universal base because it can enhance stability relative to U when paired with A, G, U or C inside a double helix. These structural and thermodynamic properties may contribute to the biological functions of Ψ.


Subject(s)
Pseudouridine/chemistry , RNA, Double-Stranded/chemistry , Base Pairing , Hydrogen Bonding , RNA Stability , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...