Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 21(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113903

ABSTRACT

Disinfection is crucial to control and prevent microbial pathogens on surfaces. Nonetheless, disinfectants misuse in routine disinfection has increased the concern on their impact on bacterial resistance and cross-resistance. This work aims to develop a formulation for surface disinfection based on the combination of a natural product, cinnamaldehyde, and a widely used biocide, cetyltrimethylammonium bromide. The wiping method was based on the Wiperator test (ASTM E2967-15) and the efficacy evaluation of surface disinfection wipes test (EN 16615:2015). After formulation optimization, the wiping of a contaminated surface with 6.24 log10 colony-forming units (CFU) of Escherichia coli or 7.10 log10 CFU of Staphylococcus aureus led to a reduction of 4.35 log10 CFU and 4.27 log10 CFU when the wipe was impregnated with the formulation in comparison with 2.45 log10 CFU and 1.50 log10 CFU as a result of mechanical action only for E. coli and S. aureus, respectively. Furthermore, the formulation prevented the transfer of bacteria to clean surfaces. The work presented highlights the potential of a combinatorial approach of a classic biocide with a phytochemical for the development of disinfectant formulations, with the advantage of reducing the concentration of synthetic biocides, which reduces the potentially negative environmental and public health impacts from their routine use.


Subject(s)
Acrolein/analogs & derivatives , Cetrimonium/pharmacology , Disinfectants/pharmacology , Acrolein/pharmacology , Disinfection/instrumentation , Environmental Microbiology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
2.
Molecules ; 24(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671687

ABSTRACT

Surface disinfection is of utmost importance in the prevention of bacterial infections. This study aims to assess the ability of ten phytochemicals and related derivatives as potentiators of two commonly used biocides-cetyltrimethylammonium bromide (CTAB) and lactic acid (LA). LA in combination with cinnamic, hydrocinnamic, α-methylcinnamic, and α-fluorocinnamic acids had a factional inhibitory concentration index (FICI) ≤ 1 for Escherichia coli and Staphylococcus aureus. Several phytochemicals/derivatives in combination with biocides improved the biocidal efficacy against early sessile bacteria. The most effective combination was LA with allyl cinnamate (2.98 ± 0.76 log CFU.cm-2 reduction) against E. coli. The combination with CTAB was successful for most phytochemicals/derivatives with a maximum bactericidal efficacy against sessile E. coli when combined with allyl cinnamate (2.20 ± 0.07 log CFU.cm-2 reduction) and for S. aureus when combined with α-methylcinnamic acid (1.68 ± 0.30 log CFU.cm-2 reduction). This study highlights the potential of phytochemicals and their derivatives to be used in biocide formulations.


Subject(s)
Cinnamates/pharmacology , Disinfectants/pharmacology , Phytochemicals/pharmacology , Bacteria/drug effects , Cetrimonium/pharmacology , Hydrophobic and Hydrophilic Interactions , Lactic Acid/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL