Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Behav Brain Res ; 466: 114975, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38552745

ABSTRACT

Painful invasive procedures are often performed on newborns admitted to intensive care units (ICU). The acute and long-term effects caused by these stimuli can be investigated in animal models, such as newborn rats. Previous studies have shown that animals subjected to nociceptive stimuli in the neonatal period show sex-specific behavioral changes such as signs of anxiety or depression. Under the same conditions, neonatal stimuli also provoke an increase in the rate of neurogenesis and cell activation in the hippocampal dentate gyrus. So, this study aims to identify the possible roles of central monoamines, receptor expression (5-HT1A), and signaling factors (p-CREB) underlying the long-term effects of neonatal nociceptive stimulation. For this, noxious stimulation was induced by intra-plantar injection of Complete Freund´s adjuvant (CFA) on the postnatal day 1 (P1) or 8 (P8). Control animals were not stimulated. On P75 the behavioral tests were conducted (hotplate and elevated plus maze), followed by sacrifice and molecular studies. Our results showed that neonatal nociceptive stimulation alters pain sensitization specially in females, while stimulation on P1 increases pain threshold, P8-stimulated animals respond with reduced pain threshold (P < 0.001). Hippocampal expression of 5-HT1A receptor and p-CREB were reduced in P8 F group (P < 0.001) in opposition to the increased utilization rate of dopamine and serotonin in this group (P < 0.05). This study shows sex- and age-specific responses of signaling pathways within the hippocampus accompanied by altered behavioral repertoire, at long-term after neonatal painful stimulation.


Subject(s)
Animals, Newborn , Hippocampus , Pain Threshold , Receptor, Serotonin, 5-HT1A , Animals , Female , Male , Rats , Behavior, Animal/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Freund's Adjuvant , Hippocampus/metabolism , Nociception/physiology , Pain/metabolism , Pain/physiopathology , Pain Threshold/physiology , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism
2.
Eur J Neurosci ; 53(2): 571-587, 2021 01.
Article in English | MEDLINE | ID: mdl-32852090

ABSTRACT

Although it is known that nociceptive stimulation in the first postnatal week in rats is useful to model preterm pain, resulting in activation of specific brain areas, as assessed in vivo using manganese-enhanced magnetic resonance imaging (MEMRI), little is known about its long-term effects and sex specificity. Here we aimed to investigate whether inflammatory pain induced in male and female adult rats modify the pattern of brain activation between animals subjected or not to neonatal pain. For this, Complete Freund's adjuvant (CFA) was injected into the left hind paw of rat pups on postnatal day 1 (P1) or P8 to induce inflammatory response. During adulthood, CFA-treated and control animals were injected with CFA 1 hr prior MRI. MEMRI has the ability to enhance the contrast of selective brain structures in response to a specific stimulus, as the pain. MEMRI responses were consistent with activation of nociceptive pathways and these responses were reduced in animals treated with CFA on P1, but increased in animals treated on P8, mainly in the female group. In agreement, P8 female group showed exacerbated responses in the thermal nociceptive test. Using MEMRI, we conclude that the natural ability of adult rats to recognize and react to pain exposition is modified by neonatal painful exposition, mainly among females.


Subject(s)
Manganese , Pain , Animals , Brain/diagnostic imaging , Female , Freund's Adjuvant/toxicity , Inflammation , Magnetic Resonance Imaging , Male , Manganese/toxicity , Rats
3.
Sci Rep ; 9(1): 9973, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292491

ABSTRACT

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.


Subject(s)
Antineoplastic Agents/pharmacology , Ependymoma/drug therapy , Salivary Proteins and Peptides/pharmacology , Adult , Animals , Apoptosis/drug effects , Arthropod Proteins , Child , Child, Preschool , Female , Fetal Stem Cells/cytology , Fetal Stem Cells/metabolism , Humans , Male , Rats, Wistar , Xenograft Model Antitumor Assays/methods
4.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Article in English | MEDLINE | ID: mdl-31161782

ABSTRACT

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Subject(s)
Amniotic Fluid/metabolism , Behavior, Animal , Brain Ischemia , Stem Cell Transplantation , Stem Cells/metabolism , Stroke , Adult , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Brain Ischemia/therapy , Disease Models, Animal , Female , Heterografts , Humans , Pregnancy , Rats , Rats, Wistar , Stem Cells/pathology , Stroke/metabolism , Stroke/pathology , Stroke/physiopathology , Stroke/therapy
5.
Brain Res Bull ; 147: 133-139, 2019 04.
Article in English | MEDLINE | ID: mdl-30658130

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) refers to the delivery of electric current to specific deep brain structures through implanted electrodes. Recently approved for use in United States, DBS to the anterior nucleus of thalamus (ANT) is a safe and effective alternative treatment for medically refractory seizures. Despite the anti-seizure effects of ANT DBS, preclinical and clinical studies have failed to demonstrate it actions at a whole brain level. OBJECTIVE: Here, we used a magnetic resonance imaging (MRI)-based approach in healthy adult rats to investigate the effects of ANT DBS through the circuit of Papez, which has central role in the generation and propagation of limbic seizures, in temporal lobe epilepsy (TLE). METHODS: After ANT electrode implantation and recovery, ANT DBS and SHAM (sham animals had electrodes implanted but were not stimulated) rats received one single injection of the contrast enhancer, manganese chloride (60 mg/kg, ip). Twelve hours after, rats underwent the baseline scan using the MEMRI (Manganese-Enhanced Magnetic Resonance Imaging) technique. We used the same MEMRI and parvalbumin sequence to follow the DBS delivered during 1 h (130 Hz and 200 µA). Perfusion was followed by subsequent c-Fos and parvalbumin immunostaining of brain sections. RESULTS: Acute unilateral ANT DBS significantly reduced the overall manganese uptake and consequently, the MEMRI contrast in the circuit of Papez. Additionally, c-Fos expression was bilaterally increased in the cingulate cortex and posterior hypothalamus, areas directly connected to ANT, as well as in amygdala and subiculum, within the limbic circuitry. CONCLUSION: Our data indicate that MEMRI can be used to detect whole-brain responses to DBS, as the high frequency stimulation parameters used here caused a significant reduction of cell activity in the circuit of Papez that might help to explain the antiepileptic effects of ANT DBS.


Subject(s)
Anterior Thalamic Nuclei/metabolism , Seizures/therapy , Amygdala/metabolism , Animals , Cell Nucleus/metabolism , Deep Brain Stimulation/methods , Electrodes, Implanted , Epilepsy/metabolism , Epilepsy/therapy , Epilepsy, Temporal Lobe/therapy , Hippocampus/metabolism , Limbic System , Magnetic Resonance Imaging/methods , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Seizures/metabolism , Thalamus/metabolism
6.
Cell Transplant, v. 28, n. 9-10, p. 1306-1320, jun. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2856

ABSTRACT

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

7.
Sci Rep, v. 9, n. 9973, jul. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2803

ABSTRACT

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.

8.
Cell Transplant. ; 28(9-10): 1306–1320, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17239

ABSTRACT

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

9.
Sci. Rep. ; 9(9973)2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16121

ABSTRACT

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.

10.
Front Neurol ; 9: 1023, 2018.
Article in English | MEDLINE | ID: mdl-30555406

ABSTRACT

Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).

11.
Stem Cell Res Ther ; 9(1): 310, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413179

ABSTRACT

BACKGROUND: Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. METHODS/RESULTS: We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. CONCLUSIONS: Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.


Subject(s)
AC133 Antigen/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Mesenchymal Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tropism , Animals , Brain Neoplasms/ultrastructure , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Migration Assays , Cell Proliferation , Cell Separation , Chemokines/metabolism , Glioblastoma/ultrastructure , Humans , Immunophenotyping , Male , Mesenchymal Stem Cells/ultrastructure , Models, Biological , Neoplastic Stem Cells/ultrastructure , Quantum Dots/metabolism , Rats, Wistar , Receptors, Chemokine/metabolism , Spheroids, Cellular/pathology , Tumor Cells, Cultured
12.
Oncotarget ; 9(31): 21731-21743, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29774098

ABSTRACT

BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

13.
Neuromodulation ; 21(2): 160-167, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28960670

ABSTRACT

INTRODUCTION AND OBJECTIVES: Cognitive impairment is a significant comorbidity of temporal lobe epilepsy that is associated with extensive hippocampal cell loss. Deep brain stimulation (DBS) of the anterior thalamic nucleus (ANT) has been used for the treatment of refractory partial seizures. In the pilocarpine model of epilepsy, ANT DBS applied during status epilepticus (SE) reduces hippocampal inflammation and apoptosis. When given to chronic epileptic animals it reduces hippocampal excitability and seizure frequency. Here, we tested whether ANT DBS delivered during SE and the silent phase of the pilocarpine model would reduce cognitive impairment when animals became chronically epileptic. MATERIALS AND METHODS: SE was induced by a systemic pilocarpine injection (320 mg/kg). Immediately after SE onset, rats were assigned to receive DBS during the first six hours of SE (n = 8; DBSa group) or during SE + the silent period (i.e., 6 h/day until the animals developed the first spontaneous recurrent seizure; n = 10; DBSs group). Four months following SE, animals underwent water maze testing and histological evaluation. Nonstimulated chronic epileptic animals (n = 13; PCTL group) and age-matched naïve rats (n = 11, CTL group) were used as controls. Results were analyzed by repeated-measures analyses of variance (RM_ANOVA) and one-way ANOVAs, followed by Newman-Keuls post hoc tests. RESULTS: Although all groups learned the spatial task, epileptic animals with or without DBS spent significantly less time in the platform quadrant, denoting a spatial memory deficit (p < 0.02). Despite these negative behavioral results, we found that animals given DBS had a significantly higher number of cells in the CA1 region and dentate gyrus. Mossy fiber sprouting was similar among all epileptic groups. CONCLUSIONS: Despite lesser hippocampal neuronal loss, ANT DBS delivered either during SE or during SE and the silent phase of the pilocarpine model did not mitigate memory deficits in chronic epileptic rats.


Subject(s)
Anterior Thalamic Nuclei/physiology , Deep Brain Stimulation/methods , Epilepsy, Temporal Lobe/therapy , Spatial Learning/physiology , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Hippocampus/metabolism , Hippocampus/pathology , Longitudinal Studies , Male , Maze Learning/drug effects , Muscarinic Agonists/toxicity , Pilocarpine/toxicity , Random Allocation , Rats , Rats, Wistar , Spatial Learning/drug effects
14.
Stem Cell Res Ther, v. 9, 310, 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2601

ABSTRACT

Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.

15.
Oncotarget, v. 9, n. 31, p. 21731-21743, 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2520

ABSTRACT

Background: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

16.
Stem Cell Res. Ther. ; 9: 310, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15671

ABSTRACT

Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.

17.
Oncotarget ; 9(31): p. 21731-21743, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15291

ABSTRACT

Background: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

18.
Acta Neurochir Suppl ; 122: 329-33, 2016.
Article in English | MEDLINE | ID: mdl-27165931

ABSTRACT

Intracranial pressure (ICP) is a major neurological parameter in animals and humans. ICP is a function of the relationship between the contents of the cranium (brain parenchyma, cerebrospinal fluid, and blood) and the volume of the skull. Increased ICP can cause serious physiological effects or even death in patients who do not quickly receive proper care, which includes ICP monitoring. Epilepsies are a set of central nervous system disorders resulting from abnormal and excessive neuronal discharges, usually associated with hypersynchronism and/or hyperexcitability. Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy and is also refractory to medication. ICP characteristics of subjects with epilepsy have not been elucidated because there are few studies associating these two important neurological factors. In this work, an invasive (ICPi) and the new minimally invasive (ICPmi) methods were used to evaluate ICP features in rats with chronic epilepsy, induced by the experimental model of pilocarpine, capable of generating the main features of human TLE in these animals.


Subject(s)
Epilepsy, Temporal Lobe/physiopathology , Hippocampus/diagnostic imaging , Intracranial Pressure/physiology , Animals , Anticonvulsants/therapeutic use , Brain/diagnostic imaging , Brain/pathology , Chronic Disease , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/pathology , Epilepsy/physiopathology , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Magnetic Resonance Imaging , Male , Muscarinic Agonists/toxicity , Organ Size , Pilocarpine/toxicity , Rats , Rats, Wistar , Thiopental/therapeutic use
19.
Behav Brain Res ; 296: 331-338, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26416672

ABSTRACT

Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches.


Subject(s)
Anxiety/etiology , Behavior, Animal/physiology , Hippocampus/pathology , Hypoxia/complications , Memory Disorders/etiology , Memory, Short-Term/physiology , Neurogenesis/physiology , Spatial Memory/physiology , Age Factors , Animals , Animals, Newborn , Anxiety/physiopathology , Disease Models, Animal , Magnetic Resonance Imaging , Male , Memory Disorders/physiopathology , Rats , Rats, Wistar
20.
Front Neurol ; 6: 161, 2015.
Article in English | MEDLINE | ID: mdl-26217304

ABSTRACT

Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn(2+)) enhances MRI contrast in vivo. Due to similarities between Mn(2+) and calcium (Ca(2+)), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca(2+) channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.

SELECTION OF CITATIONS
SEARCH DETAIL
...