Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36830484

ABSTRACT

Consumer demand for retail cage-free eggs is driving the layer industry towards greater use of extensive housing environments. However, there is limited research on how these environments affect egg production characteristics of brown egg layers, as was the focus of this study. Five housing environments were evaluated under typical industry conditions, including conventional cages, enrichable colony cages, enriched colony cages, cage-free and free-range. Three different brown egg laying strains were housed in the different housing environments and managed according to standard husbandry practices and stocking densities. Data collection for the strains began at 17 weeks of age, with a base period of 28 days for feed weigh backs and egg quality assessments. Housing environment had a highly significant (p < 0.0001) effect on all egg production characteristics measured, including egg production rates (% hen-day and % hen-housed), feed consumption (g/bird/day), feed conversion (egg g/feed g), and mortality rate (%) as well as percent grade A, B, and loss. Previous research revealed better egg production metrics for white egg layers in caged environments than extensive environments. In contrast, we observed brown egg layers had optimum production results for the free-range housing environments, and the poorest performance in enrichable colony cages.

2.
Animals (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36830504

ABSTRACT

This study evaluates the effect of housing environment on the egg quality characteristics of brown egg layers as many different environments are currently used in the industry. Battery cages, barren colony cages, enriched colony cages, cage-free, and free-range environments were evaluated. Overall, all egg quality measurements were affected by housing environment (p < 0.01) except for vitelline membrane strength, elasticity, and egg solids. Eggshells and yolks were lightest in barren colony cages and darkest from free-range hens (p < 0.0001). Free-range eggs were heavier than eggs from all other environments (p < 0.0001). Cage-free eggs had lower albumen height and Haugh units than other environments (p < 0.0001). Lastly, cage-free and free-range eggs had stronger eggshells than the other environments (p < 0.0001), and free-range eggs had more elastic eggshells than eggs from conventional battery cages and barren colony cages (p < 0.01). Access to the range seemed to give free-range hens different nutritional advantages, which allowed for the darker yolks and shells. Furthermore, eggs from barren colony cages seemed to exhibit more negative characteristics. Simply adding enrichments to colony cages did not improve or detract from egg quality. From this research, it appears that, as the industry moves toward extensive environments, the egg quality of brown egg layers will improve.

3.
Poult Sci ; 102(4): 102486, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736139

ABSTRACT

This study was conducted to understand the impact of including full fat high-oleic soybean meal in layer hen diets on nutrient digestibility and added nutritional value in eggs. Forty-eight layers (∼36 wk old) were randomly assigned to one of 4 isonitrogenous (18.5% crude protein) treatment diets with 12 replicate birds per treatment in a 3-wk study. Treatments were 1) solvent extracted defatted soybean meal + corn diet, 2) dry extruded defatted soybean meal + corn, 3) full-fat soybean meal + corn, 4) high-oleic full-fat soybean meal + corn diet. Apparent ileal digestibility of crude fat (CF) and crude protein (CP) were determined using celite (∼2%) as an indigestible marker. Tibia strength and egg quality parameters (egg weight, shell strength, Haugh unit, shell color, and yolk color) were recorded during the study. Fatty acid profiles, including the monounsaturated fatty acid, oleic acid (C18:1, cis), in eggs and adipogenic tissue (liver, muscle, and fat pad) were measured using gas chromatography (GC-FID). Digestibility values of CF ranged from 71 to 84% and CP varied from 67 to 72% for treatment diets, with treatment mean values being no different (P > 0.05) between treatment diets. No differences between treatment diets in tibia strength or egg quality parameters (egg weight, shell strength, and Haugh unit) were observed (P > 0.05) except for yolk color. Similarly, there were no differences in the total lipids in egg yolk (P > 0.05) between treatment diets. However, oleic acid percentage of total lipid in egg and tissue was significantly higher (P < 0.001) in hens given the high-oleic full-fat soybean meal diet than in other treatment groups. No difference was observed in oleic acid percentage of total lipid in egg between the other 3 treatment diets (P > 0.05). Overall, the results exhibited that the eggs and tissue of layer hens fed the full-fat high-oleic acid soybean meal diet were higher in oleic acid while the CF and CP digestibility remained similar to the digestibility of the other diets.


Subject(s)
Chickens , Oleic Acid , Animals , Female , Chickens/physiology , Oleic Acid/pharmacology , Flour , Diet/veterinary , Nutrients/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
4.
Poult Sci ; 102(4): 102531, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805406

ABSTRACT

Addition of vitamins and antioxidants has been long associated with increased immunity and are commonly used in the poultry industry; however, less is known regarding their use in broiler breeder hens. The objective of this study was to determine if feeding a complex of protected biofactors and antioxidants composed of vitamins and fermentation extracts to broiler breeder hens conferred resistance against Salmonella enterica serovar Enteritidis (S. Enteritidis) in the progeny chicks. Three-day-old chicks from control- and supplement-fed hens were challenged with S. Enteritidis and necropsied 4- and 11-days postchallenge (dpc) to determine if there were differences in invasion and colonization. Serum and jejunum were evaluated for various cytokine and chemokine production. Fewer (P = 0.002) chicks from supplement-fed hens had detectable S. Enteritidis in the ceca (32.6%) compared to chicks from control-fed hens (64%). By 11 dpc, significantly (P < 0.001) fewer chicks from supplement-fed hens were positive for S. Enteritidis (liver [36%]; ceca [16%]) compared to chicks from the control hens (liver [76%]; ceca [76%]). The recoverable S. Enteritidis in the cecal content was also lower (P = 0.01) at 11 dpc. In additional to the differences in invasion and colonization, cytokine and chemokine production were distinct between the 2 groups of chicks. Chicks from supplement-fed hens had increased production of IL-16, IL-6, MIP-3α, and RANTES in the jejunum while IL-16 and MIP-1ß were higher in the serum of chicks from the control-fed hens. By 11 dpc, production of IFN-γ was decreased in the jejunum of chicks from supplement-fed hens. Collectively, these data demonstrate adding a protected complex of biofactors and antioxidants to the diet of broiler breeder hens offers a measure of transgenerational protection to the progeny against S. Enteritidis infection and reduces colonization that is mediated, in part, by a robust and distinct cytokine and chemokine response locally at the intestine and systemically in the blood.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animals , Female , Salmonella enteritidis , Chickens , Antioxidants , Interleukin-16 , Diet/veterinary , Vitamins , Salmonella Infections, Animal/prevention & control , Poultry Diseases/prevention & control
5.
J Food Prot ; 85(10): 1479-1487, 2022 10 01.
Article in English | MEDLINE | ID: mdl-34762731

ABSTRACT

ABSTRACT: Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Arachis , Cecum/microbiology , Chickens , Male , Poultry , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis
6.
Transl Anim Sci ; 5(1): txab015, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33748683

ABSTRACT

We aimed to determine the effects of feeding a high-oleic peanut (HOPN) diet to egg-producing laying hens on egg quality, digestibility, and feed conversion. Three isonitrogenous and isocaloric dietary treatments were formulated with 1) Control diet (CON)-a corn-soybean meal conventional diet with 7.8 % added poultry fat, 2) HOPN diet-dietary inclusion of ~20% coarse-ground whole HOPN, and 3) oleic acid (CON-OA) diet-a control diet supplemented with 2.6% oleic fatty acid oil. Ninety-nine 57-wk-old brown Leghorn laying hens were randomly assigned to 33 animals per treatment. Animals were housed individually for 8 wk. Body and feed weights were recorded weekly and feed conversation ratio was calculated. Bi-weekly, shell eggs were analyzed for quality (yolk color, albumen height, and Haugh unit [HU]). Jejunum samples were collected at week 8 for histomorphometric analysis. Analysis of variance was performed on all variables using a general linear mixed model. Laying hens fed the CON-OA diet produced greater number of eggs relative to those fed the HOPN and control diets (P < 0.05). The roche yolk color value was higher (P < 0.001) in eggs from hens fed the HOPN diet. There were no differences in laying hen performance, eggshell color, eggshell strength, eggshell elasticity and egg albumen height, or egg HU, ileal fat digestibility, or villi surface among treatment groups. However, the apparent metabolizable energy (P < 0.01) and ileal protein digestibility (P = 0.02) were greater in laying hens fed the HOPN diet relative to the CON diet. This study suggests that whole unblanched high-oleic peanuts may be an acceptable alternative feed ingredient for laying hens.

7.
Poult Sci ; 99(12): 6774-6782, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248593

ABSTRACT

Broiler embryonic development depends on the nutrients that are available in the egg, which includes mostly water, lipids, and proteins. Carbohydrates represent less than 1%, and free glucose only 0.3%, of the total nutrients. Considering that energy requirements increase during incubation and metabolism is shifted toward the use of glycogen stores and gluconeogenesis from amino acids, extensive muscle protein degradation in the end of incubation can compromise chick development in the initial days after hatch. Significant prehatch changes occur in embryonic metabolism to parallel the rapid embryonic development. Oral consumption of the amniotic fluid begins around 17 d of incubation and promotes rapid development of the intestinal mucosa, which is characterized by morphological changes and increased expression and activity of enzymes and transporters. Furthermore, ingested substrates are stored as nutritional reserves to be used during hatching and in the first week after hatch. At hatch, this limited-nutrient store is directed to the functional development of the gastrointestinal tract to enable assimilation of exogenous nutrients. In ovo feeding is an alternative to deliver essential nutrients to chick embryos at this critical and challenging phase. The improved nutritional status and physiological changes triggered by in ovo feeding can resonate throughout the entire rearing period with significant health and economic gains. The present review addresses the main changes in metabolism and intestinal development throughout incubation, and also addresses scientific advances, limitations and future perspectives associated with the use of in ovo feeding that has been regarded as an important technology by the poultry industry.


Subject(s)
Animal Husbandry , Chickens , Energy Metabolism , Animals , Chick Embryo , Chickens/anatomy & histology , Chickens/growth & development , Chickens/metabolism , Gluconeogenesis , Glycogen/metabolism , Technology
8.
Poult Sci ; 99(9): 4242-4248, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32867968

ABSTRACT

A study was conducted to determine differences between Histomonas meleagridis-infected and control pullets based on disease signs, hen growth, and egg production and quality. Ross 708SF females were weighed and then placed in pens on the day of hatch (92 chicks/pen). At 25 D, 4 pens were infected with H. meleagridis in the cloaca, whereas 4 pens were control. At 5, 10, and 20 D after inoculation, 5 birds per pen (2 birds per pen at 20 D) were subjectively scored for blackhead disease. Birds were feed restricted based on BW and/or egg production. Individual BW were collected at 3, 5, 13, 15, 20, and 64 wk. Egg production was recorded at 24-63 wk. Egg quality was measured at 30, 34, 39, 42, and 56 wk and included shell and vitelline membrane strength, shell thickness, egg weight, and Haugh units. Hatchability was measured at 27, 37, and 60 wk and fertility at 27 and 37 wk. Treatment effects were determined by JMP Pro 14 using GLM with means separated using the Student t test (P ≤ 0.05). Cecal lesions were apparent on 5, 10, and 20 D and liver lesions on 10 and 20 D for the infected birds. The control had no histomoniasis lesions. Flock uniformity differed on wk 13 and 20 (P = 0.04; 0.04). Infected birds weighed less at 64 wk (P = 0.002). The onset of lay was not delayed. Infected birds produced more eggs during 1 period (P = 0.02). The infected birds produced heavier eggs at 30 wk (P = 0.04), eggs with a stronger and thicker shell at 42 wk (P = 0.05, 0.03), and eggs with a stronger vitelline membrane at 56 wk (P = 0.049). Hatchability and fertility did not differ (P > 0.05). H. meleagridis was observed in the infected birds' cecal samples at trial termination. This study indicates early infection with H. meleagridis has limited effects on pullet egg production and quality.


Subject(s)
Chickens , Poultry Diseases , Protozoan Infections, Animal , Trichomonadida , Animals , Body Weight , Chickens/growth & development , Female , Fertility , Oviposition , Poultry Diseases/parasitology , Poultry Diseases/pathology , Protozoan Infections, Animal/pathology
9.
Transl Anim Sci ; 4(3): txaa137, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32832857

ABSTRACT

Locally grown feed ingredients of high energy and protein content, such as peanuts, maybe economically feasible alternatives to corn and soybean meal in broiler diets. Even though normal-oleic peanuts have been demonstrated to be a viable feed ingredient for poultry, few studies to date have examined the use of high-oleic peanuts (HO PN) as an alternative feed ingredient for broiler chickens. Thus, we aimed to determine the effect of feeding HO PN on broiler performance, nutrient digestibility, and intestinal morphology. Three isocaloric, isonitrogenous experimental diets were formulated with 1) dietary inclusion of ~10% coarse-ground whole HO PN; 2) a corn-soybean meal control diet with 5.5% added poultry fat; and 3) a control diet supplemented with 5.5% oleic fatty acid oil. Three-hundred Ross 708 broilers were randomly placed in 10 replicate pens per treatment with 10 chicks per pen and raised until 42 d. Body weights (BW) and feed intake were determined weekly, and feed conversion ratio (FCR) was calculated. Jejunum samples were collected at 42 d for histomorphometric analysis. Analysis of variance was performed on all variables using a general linear mixed model in JMP Pro14. Broilers in the HO PN group had lower (P < 0.05) BW and higher FCR than other treatment groups at weeks 2 and 6. There were no significant differences in the jejunum villi surface area between the treatment groups. However, broilers fed the HO PN diet had greater (P = 0.019) apparent metabolizable energy relative to the other treatment groups, suggesting improved nutrient uptake of dietary fats and/or carbohydrates in the HO PN treatment group. However, additional studies are warranted to further define the nutritional value of HO PN as an alternative poultry feed ingredient.

10.
Poult Sci ; 99(4): 2236-2245, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32241509

ABSTRACT

Early feeding trials using peanut meal prepared from normal-oleic peanuts helped to identify peanuts as a suitable alternative feed ingredient for poultry. Yet no studies to date have examined the use of high-oleic peanuts (HO-PN) as a feed ingredient for meat type chickens. Therefore, this study aimed to determine the effect of feeding whole unblanched HO-PN on the fatty acid profile of the meat produced from broilers. At hatch male chicks were randomly placed in raised wire cages, in 10 replicate pens per treatment with 10 chicks per pen, and fed with one of the 3 isocaloric, isonitrogenous diets ad libitum for 42 days: (1) conventional control of soybean meal + corn, (2) 10 to 12% HO-PN and corn diet, or (3) control diet spiked with ≈6.0% oleic acid oil. All body weights (BW) were collected, and broiler selection for processing was determined by individual BW within one-half a standard deviation of the experiment 42-D mean BW, with one bird selected per pen (10 replicate pens per treatment, 3 treatments, 10 birds selected per treatment, yielding a total sample size of 30 birds). Performance was determined weekly and breast samples were analyzed for fatty acid and amino acid profile. All data was analyzed using analysis of variance, with t-test mean comparisons at P < 0.05. BW were similar between broilers fed the HO-PN and control diet, while feed conversion ratio of broilers fed the HO-PN diet was significantly higher at weeks 2, 4, and 6 in comparison to the other treatments (P ≤ 0.03). Broilers fed with HO-PN diet had reduced carcass and pectoralis major weights in comparison to the other treatments. Chicken breast from broilers fed the HO-PN diet had significantly reduced saturated and trans fatty acid content in comparison to the controls (P ≤ 0.0002). Although additional studies must be conducted, this study suggests that feeding whole unblanched HO-PN to broiler chickens may serve as a means to enrich the meat produced with unsaturated fatty acids.


Subject(s)
Arachis/chemistry , Chickens/metabolism , Fatty Acids/metabolism , Oleic Acid/metabolism , Animal Feed/analysis , Animals , Chickens/growth & development , Diet/veterinary , Dietary Supplements/analysis , Male , Oleic Acid/administration & dosage , Random Allocation
11.
ACS Omega ; 5(2): 1080-1085, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31984264

ABSTRACT

Previous studies have demonstrated that allergenic feed proteins from peanuts in the diets of layer hens are not detected in the eggs produced. Hence, in this study, we aimed to determine if soy and/or peanut proteins in poultry feed rations of broiler chickens or layer hens would be transferred or detectable in the meat or eggs produced. To meet this objective, 99 layer hens and 300 broiler chickens were equally divided into treatment groups and fed one of three experimental diets: control soybean meal and corn diet, whole unblanched high-oleic peanut and corn diet (HO PN), or a control diet spiked supplemented with oleic acid (OA) oil. At termination, broiler chickens were processed, and chicken breast samples of the left pectoralis muscle were collected, and eggs were collected from layers. Total protein extracts from pooled egg samples and chicken breast samples were subjected to enzyme-linked immunosorbent assay (ELISA) methods and immunoblotting analysis with rabbit antipeanut agglutinin antibodies and rabbit antisoy antibodies for the detection of peanut and soy proteins. Peanut and soy proteins were undetected in all pooled egg samples and individual chicken breast meat samples using immunoblotting techniques with rabbit antipeanut agglutinin and rabbit antisoy antibodies. Moreover, quantitative ELISA allergen detection methods determined all pooled egg samples and individual meat samples as "not containing" peanut or soy allergens. Therefore, this study helps to evaluate the risk associated with the potential transfer of allergenic proteins from animal feed to the products produced for human consumption.

12.
Poult Sci ; 98(10): 5188-5197, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31111917

ABSTRACT

Previous studies have identified peanut meal prepared from normal-oleic peanuts as a suitable and economical ingredient for broiler feed. However, to date, no studies have examined the use of new, high-oleic peanut (HO-PN) cultivars as a feed ingredient for poultry. This project aimed to determine the effect of HO-PNs as a feed ingredient for broiler chickens on the quality and sensory attributes of the meat produced. To test 3 experimental diets, male broiler chicks were randomly placed, at hatch, in raised-wire cages, in 10 replicate pens per treatment with 10 chicks per cage. For 6 wk, chicks were fed, ad libitum, one of the three isocaloric, isonitrogenous diets: (1) a conventional soybean meal plus corn control diet, (2) 10 to 12% HO-PN + corn diet, or (3) a control corn diet spiked with ≈6.0% oleic fatty acid oil (OA). At 42 D, 3 broilers per pen (30 per treatment) were processed to determine meat quality and for consumer evaluation. Carcass weights and breast yields were reduced in broilers fed HO-PN, while leg carcass yields were greater in broilers fed HO-PN in comparison to the other groups. Chicken breast from broilers fed HO-PN had reduced meat-pH, reduced L* color values, and increased cooked loss compared to other treatments. Nevertheless, a group of 100-consumer panelists scored all 3-treatment groups similar in terms of sensory attributes for cooked chicken. While additional studies must be performed, this study suggest that HO-PN may be a suitable broiler feed ingredient.


Subject(s)
Animal Feed/analysis , Arachis/chemistry , Meat/analysis , Nuts/chemistry , Oleic Acid/analysis , Animals , Chickens , Diet/veterinary , Male , Random Allocation
13.
Poult Sci ; 98(4): 1732-1748, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30535420

ABSTRACT

Previous studies have identified normal-oleic peanuts as a suitable and economical broiler feed ingredient. However, no studies to date have examined the use of high-oleic (HO) peanut cultivars as a feed ingredient for laying hens and determined the impact of feeding HO peanuts on performance and egg nutritive qualities. This project aimed to examine the use of HO peanuts as a feed ingredient for layer hens to determine the effect on performance, egg lipid chemistry, and quality of the eggs produced. Forty-eight 40-wk-old layer hens were fed a conventional soybean meal + corn control diet or a HO peanut + corn diet for 10 wk in conventional battery cages. Body and feed weights were collected weekly. Pooled egg samples were analyzed for quality, lipid analysis, and peanut protein allergenicity. There were no significant differences in hen performance or egg quality as measured by USDA grade quality, egg albumen height, or egg Haugh unit between the treatment groups. However, eggs produced from layer hens fed the HO peanut + corn diet had reduced egg weights relative to the controls (P = 0.0001). Eggs produced from layer hens fed the HO peanut diet had greater yolk color scores (P < 0.0001), HO fatty acid (P < 0.0001), and ß-carotene (P < 0.0001) levels in comparison to the controls. Eggs produced from hens fed the control diet had greater palmitic and stearic saturated fatty acids (P < 0.0001), and trans fat (P < 0.0001) content compared to eggs produced from hens fed the HO peanut diet. All egg protein extracts from all treatments at each time point were non-reactive with rabbit anti-peanut agglutinin antibodies. This study identifies HO peanuts as an abundant commodity that could be used to support local agricultural markets of peanuts and poultry within the southeastern United States and be of economic advantage to producers while providing a potential health benefit to the consumer with improved egg nutrition.


Subject(s)
Chickens/physiology , Egg Shell/chemistry , Egg Yolk/chemistry , Fatty Acids/analysis , Linoleic Acids/metabolism , Oleic Acids/metabolism , Animals , Arachis , Color , Female , Linoleic Acids/administration & dosage , Oleic Acids/administration & dosage , Random Allocation
14.
Poult Sci ; 97(5): 1605-1613, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29471499

ABSTRACT

Egg nutrient quality is strongly influenced by hen diet but is also affected by rearing environment, hen strain, and hen age. The objective of the current study was to determine the effect of: 1) conventional battery cages, 2) enrichable cage systems, 3) enriched colony housing, 4) cage-free, and 5) free-range rearing systems on mineral concentrations of whole, dried egg (yolk and albumen combined) from TA Tetra White (TW) and Hy-Line Brown (HB) hens at 44, 68, and 88 wk of age. We hypothesized that mineral concentration of eggs would differ among rearing systems but not between strains or with hen age. Hens held in enriched colony housing systems produced eggs with 10% lower Mg and 11% lower Mn levels than conventional hens. Concentrations of Ca and Cu were higher (7 and 8%, respectively) in eggs from TW hens than from HB hens. Eggs from HB hens had 8% higher concentrations of Fe, 6% higher Mg and 5% higher Mn than TW hens. Mn was higher in eggs from 44-wk hens than from 68- or 88-wk hens (16 and 11%, respectively). Interaction effects between rearing environment and hen age were observed for K and Mn concentrations. Eggs from 68-wk hens in conventional rearing systems contained 14 to 21% more K than eggs from conventional hens at 44- and 88 wk and 14 to 18% more than eggs from 68-wk hens in other rearing systems. At 88 wk of age, hens in conventional rearing systems produced eggs with higher Mn concentration than hens in enrichable or enriched colony housing systems (22 and 23%, respectively). Interactions between rearing environment, hen strain, and hen age were observed for egg Zn levels among 44- and 68-wk hens but were not detectable among 88-wk hens regardless of rearing system or hen strain. Observed differences in egg mineral content in our study were small and are unlikely to have substantial impact on human nutrition.


Subject(s)
Chickens/physiology , Eggs/analysis , Housing, Animal , Minerals/analysis , Nutritive Value , Age Factors , Animal Husbandry/methods , Animals , Chickens/genetics , Female , Humans , Ovum/chemistry
15.
Poult Sci ; 97(3): 860-864, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29351671

ABSTRACT

The use of electroencephalograms (EEG) to study the avian brain relative to behavior was conducted as early as the 1960's. EEG readings, combined with visual cues, provide the ability to elucidate and correlate behaviors to neurological and physiological changes in a chicken. The use of EEG recordings in animal models require access to the brain to implant electrodes. Having the ability to observe EEG activity on sensible birds without surgical implantation could broaden the research in this area and give further insight related to the hen's state of awareness. The development, construction, and implementation of a minimally invasive EEG electrode placement method is described. After implementation, test animals were exposed to extreme environmental stressors as part of a concurrent depopulation methods study and EEG placement withstood the condition changes and corresponding animal physical activity. Sixteen white commercial laying hens had three monopolar 32-gauge needle electrodes inserted subcutaneously and secured to their head and body. Electrodes were attached to a pre-amplifier which transferred EEG signals to a laptop based recording system. Once the electrodes were in place, the hens were placed in individual treatment/observation chamber then various environmental stressors were applied. Verification that the observed brainwave activity was neural and not muscular was done using a photic stimulation validation test. Behavior observations were recorded to correlate sensible and insensible brainwave activity. The validation test and behavior observations demonstrated the method was successful in measuring EEG in sensible laying hens. The use of a non-surgical method for recording EEG will broaden research capabilities and enhance the understanding of a hen's response its environment, eliminate the need for invasive surgical procedures, and minimizes the confounding components of anesthesia, brain surgery, and recovery. With further refinements, the method could open new avenues in avian behavioral and physiological research.


Subject(s)
Brain/physiology , Chickens/physiology , Electroencephalography/veterinary , Animals , Electrodes/statistics & numerical data , Electroencephalography/instrumentation , Electroencephalography/methods , Female , Photic Stimulation
16.
Front Vet Sci ; 2: 45, 2015.
Article in English | MEDLINE | ID: mdl-26664972

ABSTRACT

Anti-nutritional factors (ANFs) in feed ingredients can challenge gut health and reduce nutrient utilization. Birds typically activate their innate immune system as a protective response against the adverse effects of ANF, which often involves the secretion of mucin. Although dietary supplementation of exogenous enzymes are commonly used to alleviate the adverse effects of ANF on apparent nutrient digestibility, little is known about how they affect gut health, particularly in relation to the morphological development and mucin secretion of enteric mucosa. We carried out two trials to examine the effect of dietary supplementation of different types of exogenous enzymes on gut health of by accessing the effect of jejunum morphological development and ileal enteric adherent mucin thickness layer in turkeys. Dietary ß-mannanase supplementation reduced ileal adherent mucin thickness layer (804 vs 823 µg/g; p < 0.05), while a commercial blend of xylanase, amylase, and protease (XAP) reduced ileal adherent mucin layer thickness (589 vs 740 µg/g; p < 0.05); thus reducing the apparent endogenous loss of nutrients. Both enzyme supplements also affected gut morphological characteristics. In comparison to the control treatment, dietary ß-mannanase supplementation improved the jejunum tip width (219 vs 161; p < 0.05), base width (367 vs 300; p < 0.05), surface area (509,870 vs 380, 157; p < 0.05) and villi height/crypt depth ratio (7.49 vs 5.70; p < 0.05), and XAP improved the crypt depth (p < 0.05). In conclusion, dietary supplementation of exogenous enzymes may help alleviate the adverse effects of ANF on nutrient utilization by directly or indirectly removing the mucosal irritation that stimulates enteric mucin secretion.

17.
Ciênc. rural ; 40(2): 415-420, fev. 2010. tab
Article in Portuguese | LILACS | ID: lil-539917

ABSTRACT

Este estudo teve como objetivo avaliar o efeito da Matricaria chamomila sobre o estresse de codornas japonesas na fase de recria (28 a 42 dias de idade). Foram utilizadas 192 codornas com 28 dias de idades, distribuídas em blocos casualizados e submetidas às dietas com 0, 250, 500 e 750mg de camomila/kg de ração, totalizando quatro tratamentos, com oito repetições e seis aves por parcela. Foram avaliados os parâmetros de desempenho (consumo diário de ração, conversão alimentar e ganho de peso), comportamentais (tempo em imobilidade tônica, ferimentos corporais e agressividade) e fisiológicos (concentração plasmática de corticosterona e relação heterófilo:linfócito). Os resultados obtidos demonstraram que a camomila adicionada na dieta não foi capaz de alterar os parâmetros de desempenho, bem como os de comportamento e fisiológicos.


The objective of this study was to test the effect of Matricaria chamomila on the stress of the Japanese quails in the rearing period. In the rearing phase, from 28 to 42 days old, 192 quails were lodged to cages and allotted to completely randomized blocks design, with four diets (0; 250; 500 and 750mg of chamomile/kg of ration), with eight replicates and six birds per cage. Performance (feed intake, body weight gain, and feed conversion ratio), behavior (body injury, tonic immobility and focal observation) and physiological parameters (corticosterone plasmatic and heterophil/lymphocyte ratio) were evaluated. The tested chamomile levels did not affect performance, behavior and physiological parameters of quails in the rearing phase.

18.
Life Sci ; 75(18): 2245-55, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15325849

ABSTRACT

During their relatively short commercial lifespan of six weeks, broiler chickens undergo very pronounced age- or body weight-related changes in metabolic rate and body composition. The present study was aimed to assess the age-related changes in glucose oxidation rate of broiler chickens by using 13C-labeled glucose. The methodology for this breath test needed to be established first. Broiler chickens aged from two to six weeks were placed in open-circuit respiration cells and received a single intubation of U-13C6-glucose, followed by breath sampling for 4 hours and mass spectrometric analysis of 13C: 12C ratio in the exhaled air. Simultaneously, CO2 concentration in the respiration cell air was continuously monitored in order to calculate the cumulative percentage dose recovery (CPDR). With respect to the methodology, an oral dose of 2 mg U-13C6-glucose per kg body weight while maintaining a CO2 in the concentration of 0.4 to 0.5% was considered to be optimal. The three-parameter Gompertz curve fitted the CPDR values very well. Pronounced age-related changes in exogenous glucose oxidation rates in rapidly growing meat-type chickens were assessed. Young broiler chickens spend only a relatively low percentage of ingested glucose for immediate oxidation. In contrast, broiler chickens approaching the age of maximal absolute growth rate oxidize a greater proportion of the recently ingested glucose relative to the non-oxidative disposal pathways. This shift in the exogenous partitioning is discussed in relation to age-dependent changes in glucose turnover, lipid oxidation and deposition and metabolic heat production.


Subject(s)
Aging/metabolism , Chickens/metabolism , Glucose/metabolism , Algorithms , Animals , Body Weight/physiology , Breath Tests , Carbon Isotopes , Kinetics , Male , Nonlinear Dynamics , Oxidation-Reduction
19.
J Nutr ; 134(4): 806-10, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15051829

ABSTRACT

Previously, overall protein assimilation after the ingestion of a pure protein meal was studied. In this study, the kinetics of protein assimilation in humans were investigated after the ingestion of a complex meal, which more closely represents a physiologically normal situation. Overall protein assimilation in humans after the ingestion of a pancake meal, containing 12 g of fat, 27 g of carbohydrate, and 19 g of protein, was evaluated in 26 normal volunteers. Both the egg white and yolk of L-[1-(13)C]-leucine-substituted eggs were used to make the batter. The labeled eggs were produced by feeding laying hens a standard chicken diet supplemented with 3 g/kg of L-[1-(13)C]-leucine (99%, mol:mol). High enrichment levels of protein with adequate labeling patterns were obtained in eggs from laying hens fed the L-[1-(13)C]-leucine-substituted diet. The isotopic enrichment of leucine at plateau was equal in egg white and yolk. The overall tracer recovery in egg proteins was 22.5%. The overall protein assimilation parameters in subjects that consumed the pancake meal did not differ from those obtained in subjects that consumed a single protein meal (mean cumulative (13)C recovery/6 h = 17.22 +/- 4.74%, with a maximal (13)C recovery/h of 5.65 +/- 1.48%, which was attained 145 +/- 25 min after ingestion of the meal). The pancake test meal prepared with eggs intrinsically labeled with L-[1-(13)C]-leucine is ideal for the study of protein assimilation. The incorporation of differently labeled substrates into a single test meal allows the assessment of different gastrointestinal processes in the overall assimilation of proteins.


Subject(s)
Breath Tests , Dietary Proteins/pharmacokinetics , Digestion , Food , Carbon Isotopes , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/pharmacokinetics , Dietary Proteins/administration & dosage , Egg White/analysis , Egg Yolk/chemistry , Eggs , Female , Gastric Emptying , Gastrointestinal Transit , Humans , Isotope Labeling , Kinetics , Leucine/analysis , Male
20.
Br J Nutr ; 90(2): 261-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12908886

ABSTRACT

The objective of the present study was to investigate the effects of dietary macronutrient ratio on energy metabolism and on skeletal muscle mRNA expression of avian uncoupling protein (UCP), thought to be implicated in thermogenesis in birds. Broiler chickens from 2 to 6 weeks of age received one of three isoenergetic diets containing different macronutrient ratios (low-lipid (LL) 30 v. 77 g lipid/kg; low-protein (LP) 125 v. 197 g crude protein (Nx6.25)/kg; low-carbohydrate (LC) 440 v. 520 g carbohydrate/kg). LP chickens were characterised by significantly lower body weights and food intakes compared with LL and LC chickens (-47 and -38 % respectively) but similar heat production/kg metabolic body weight, as measured by indirect calorimetry, in the three groups. However, heat production/g food ingested was higher in animals receiving the LP diet (+41 %, P<0.05). These chickens also deposited 57 % less energy as protein (P<0.05) and 33 % more as fat. No significant differences in energy and N balances were detected between LL and LC chickens. The diets with the higher fat contents (i.e. the LP and LC diets) induced slightly but significantly higher relative expressions of avian UCP mRNA in gastrocnemius muscle, measured by reverse transcription-polymerase chain reaction, than the LL diet (88 and 90 v. 78 % glyceraldehyde-3-phosphate dehydrogenase respectively, P<0.05). Our present results are consistent with the recent view that UCP homologues could be involved in the regulation of lipid utilisation as fuel substrate and provide evidence that the macronutrient content of the diet regulates energy metabolism and especially protein and fat deposition.


Subject(s)
Animal Nutritional Physiological Phenomena , Avian Proteins/metabolism , Chickens/metabolism , Energy Metabolism , Mitochondrial Proteins/metabolism , RNA, Messenger/metabolism , Animals , Avian Proteins/genetics , Body Weight/physiology , Chickens/blood , Chickens/genetics , Energy Metabolism/genetics , Gene Expression Regulation/genetics , Iodide Peroxidase/metabolism , Male , Mitochondrial Proteins/genetics , Mitochondrial Uncoupling Proteins , RNA, Messenger/genetics , Thermogenesis/physiology , Thyroxine/metabolism , Triiodothyronine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...