Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biol Trace Elem Res ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991669

ABSTRACT

The present study evaluated the effects of dietary selenium yeast (SY) on the brain, CSF, and blood of 30 crossbreed goats (5-6 months of age) of both sexes. After the acclimatization of 2 weeks, they were randomly separated into two groups (n = 15) named C and SY groups. The C group received only a basal diet, while SY received a basal diet along with 0.3 mg/kg/diet of SY (Sel-Plex®) in total 0.035 mg/kg/diet of SY for 10 weeks. Se concentration (µg /g dry weight) in 15 different parts of the goat's brain was accessed, and results showed that the highest concentration was found in the occipital cerebrum (322.0 ± 6.146), whereas the lowest concentration was found in the midbrain (10.33 ± 0.232). Besides, the oxidative biomarkers including GSH (12.13 ± 0.191), GSH-Px (206.7 ± 2.362), GST (23.80 ± 0.279), CAT (14.80 ± 0.279), and SOD (152.5 ± 9.540) were increased in SY as compared to GSH (8.200 ± 0.144), GSH-Px (112.9 ± 1.183), GST (18.93 ± 0.284), CAT (12.53 ± 0.215), and SOD (109.0 ± 1.966) of C. The level of cholesterol was also significantly decreased in the serum of the SY group (84.87 ± 0.960) as compared to C (110.5 ± 0.592). In addition, the cholesterol level in CSF decreased significantly in SY (0.3567 ± 0.016) as compared to C (0.509 ± 0.009). The current research suggests that SY supplementation has improved the brain's antioxidant status, blood biochemistry, and cholesterol levels in both serum and CSF of goats.

2.
Food Sci Nutr ; 10(11): 3842-3854, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36348775

ABSTRACT

We examined whether surplus dietary selenium (Se) supply could alleviate high concentrate (HC) diet-induced hepatic oxidative stress (OS) and inflammation. Eighteen young goats were distributed into three groups; were fed low (LC, concentrate: forage; 35: 65), high concentrate (HC, 65: 35), or Se-supplemented HC (HCSe, 65: 35 + 0.5 mg Se kg-1 diet) diets for 10 weeks. Short chain fatty acids, OS markers and immunoinflammatory genes expressions were assessed through gas chromatograph, kits, and RT-qPCR, respectively. Compared with LC, HC diet increased (p < .05) colonic and serum lipopolysaccharide (LPS) levels and induced hepatic oxidative injury by increasing (p < .05) malondialdehyde (MDA) levels and decreasing (p < .05) activities of glutathione peroxidase, superoxide dismutase, and catalase. HC diet altered hepatic mRNA expressions of toll-like receptor-4 (TLR-4), cluster of differentiation-14 (CD-14), tumor necrosis factor-α (TNF-α), TNF receptor-associated factor-6 (TRAF-6), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), IL-10, IL-13, LPS-binding protein (LBP), serum amyloid A (SAA), α-acid glycoprotein (AGP), and albumin (ALB). Conversely, extra-Se supply lowered LPS and attenuated antioxidant status and inflammation in liver. In conclusion, HC diet induced oxidative lesions and TLR-4 pathway-mediated inflammation, whereas supranutritional Se alleviated oxidative and inflammatory lesions through TLR-4 pathway regulation in goat liver.

3.
3 Biotech ; 12(4): 103, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35463041

ABSTRACT

The cullin-RING E3 ligases (CRLs) are the biggest components of the E3 ubiquitin ligase protein family, and they represent an essential role in various diseases that occur because of abnormal activation, particularly in tumors development. Regulation of CRLs needs neddylation, a post-translational modification involving an enzymatic cascade that transfers small, ubiquitin-like NEDD8 protein to CRLs. Many previous studies have confirmed neddylation as an enticing target for anticancer drug discoveries, and few recent studies have also found a significant increase in advancement in protein neddylation, including preclinical and clinical target validation to discover the neddylation inhibitor compound. In the present review, we first presented briefly the essence of CRLs' neddylation and its control, systematic analysis of CRLs, followed by the description of a few recorded chemical inhibitors of CRLs neddylation enzymes with recent examples of preclinical and clinical targets. We have also listed various structure-based pointing of protein-protein dealings in the CRLs' neddylation reaction, and last, the methods available to discover new inhibitors of neddylation are elaborated. This review will offer a concentrated, up-to-date, and detailed description of the discovery of neddylation inhibitors.

4.
BMC Vet Res ; 16(1): 462, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33246474

ABSTRACT

BACKGROUND: High concentrate (HC) diet-induced oxidative stress causes gut epithelial damages associated with apoptosis. Selenium (Se) being an integral component of glutathione peroxidase (GSH-Px) plays an important role in antioxidant defense system. Therefore, increasing dietary Se level would alleviate HC diet-induced injuries in gut mucosa. The present study investigated eighteen cross-bred goats, randomly divided into three groups (n = 6/group) fed either low concentrate (LC, roughage: concentrate ratio 65:35), high concentrate (HC, 35:65) or HC plus Se (HC-SY) diets for 10 weeks. Se was supplemented at the dose rate of 0.5 mg Se kg- 1 diet in the form of selenium yeast. The background Se level in HC and LC diets were 0.15 and 0.035 mg.kg- 1 diet, respectively. The Se at the dose of 0.115 mg.kg- 1 diet was added in LC diet to make its concentration equivalent to HC diet and with the supplementation of 0.5 mg Se kg- 1, the goats in group HC-SY received total Se by 0.65 mg.kg- 1 diet. RESULTS: The molar concentrations of individual and total short chain fatty acids (TSCFA) significantly increased (P < 0.05) with simultaneous decrease in pH of colonic fluid in goats of HC and HC-SY groups compared with LC goats. HC diet induced loss of epithelial integrity, inflammation and loss of goblet cells in colonic mucosa associated with higher lipopolysaccharide (LPS) concentrations in colonic fluid whereas, the addition of SY in HC diet alleviated such damaging changes. Compared with LC, the HC diet elevated malondialdehyde (MDA) level with concurrent decrease in GSH-Px and superoxide dismutase (SOD) activities, while SY supplementation attenuated these changes and improved antioxidant status in colonic epithelium. Moreover, epithelial injury and oxidative stress in colon of HC goats were associated with increased apoptosis as evidenced by downregulation of bcl2 and upregulation of bax, caspases 3 and 8 mRNA expressions compared with LC goats. On contrary, addition of SY in HC (HC-SY) diet alleviated these changes by modulating expression of apoptotic genes in colonic epithelium. CONCLUSIONS: Our data suggest that supranutritional level of Se attenuates HC diet-induced oxidative stress and apoptosis and thereby minimizes the epithelial injury in colon of goats.


Subject(s)
Animal Feed/adverse effects , Goats/physiology , Selenium/administration & dosage , Animal Feed/analysis , Animals , Apoptosis/drug effects , Colon/drug effects , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Intestinal Mucosa/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects
5.
J Dairy Sci ; 96(12): 7603-16, 2013.
Article in English | MEDLINE | ID: mdl-24119813

ABSTRACT

We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium of goats.


Subject(s)
Goats , Rumen , Animals , Cyclin D1 , Diet/veterinary , Fatty Acids, Volatile/metabolism , Goats/metabolism , RNA, Messenger/metabolism , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...