Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 371(6532): 910-916, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33632841

ABSTRACT

The main force generators in eukaryotic cilia and flagella are axonemal outer dynein arms (ODAs). During ciliogenesis, these ~1.8-megadalton complexes are assembled in the cytoplasm and targeted to cilia by an unknown mechanism. Here, we used the ciliate Tetrahymena to identify two factors (Q22YU3 and Q22MS1) that bind ODAs in the cytoplasm and are required for ODA delivery to cilia. Q22YU3, which we named Shulin, locked the ODA motor domains into a closed conformation and inhibited motor activity. Cryo-electron microscopy revealed how Shulin stabilized this compact form of ODAs by binding to the dynein tails. Our findings provide a molecular explanation for how newly assembled dyneins are packaged for delivery to the cilia.


Subject(s)
Axonemal Dyneins/metabolism , Cilia/metabolism , Protozoan Proteins/metabolism , Tetrahymena thermophila/physiology , Axonemal Dyneins/chemistry , Axonemal Dyneins/genetics , Cryoelectron Microscopy , Cytoplasm/metabolism , Gene Knockdown Techniques , Image Processing, Computer-Assisted , Microtubules/physiology , Models, Molecular , Movement , Protein Binding , Protein Conformation , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Tetrahymena thermophila/genetics
2.
Dev Cell ; 47(4): 509-523.e5, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30458140

ABSTRACT

The cilia and cell cycles are inextricably linked. Centrioles in the basal body of cilia nucleate the ciliary axoneme and sequester pericentriolar matrix (PCM) at the centrosome to organize the mitotic spindle. Cilia themselves respond to growth signals, prompting cilia resorption and cell cycle re-entry. We describe a fluorescent cilia and cell cycle biosensor allowing live imaging of cell cycle progression and cilia assembly and disassembly kinetics in cells and inducible mice. We define assembly and disassembly in relation to cell cycle stage with single-cell resolution and explore the intercellular heterogeneity in cilia kinetics. In all cells and tissues analyzed, we observed cilia that persist through the G1/S transition and into S/G2/M-phase. We conclude that persistence of cilia after the G1/S transition is a general property. This resource will shed light at an individual cell level on the interplay between the cilia and cell cycles in development, regeneration, and disease.


Subject(s)
Cell Cycle/physiology , Centrioles/metabolism , Centrosome/metabolism , Cilia/metabolism , Animals , Basal Bodies/metabolism , Biosensing Techniques/methods , Cell Cycle Proteins/metabolism , Kinetics , Mice , Microtubules/metabolism
3.
Elife ; 72018 06 19.
Article in English | MEDLINE | ID: mdl-29916806

ABSTRACT

Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.


Subject(s)
Axoneme/metabolism , Cilia/metabolism , DNA-Binding Proteins/genetics , Dyneins/chemistry , HSP90 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Tacrolimus Binding Proteins/genetics , Animals , Animals, Newborn , Axoneme/ultrastructure , Base Sequence , Brain/cytology , Brain/metabolism , Cell Line , Cilia/ultrastructure , Cytoskeletal Proteins , DNA-Binding Proteins/metabolism , Dyneins/genetics , Dyneins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Chaperones/metabolism , Primary Cell Culture , Tacrolimus Binding Proteins/metabolism , Trachea/cytology , Trachea/metabolism
4.
Am J Hum Genet ; 100(5): 706-724, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28413018

ABSTRACT

During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.


Subject(s)
Epilepsy/genetics , Proteins/genetics , Spasms, Infantile/genetics , Synaptic Transmission , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Disease Models, Animal , Epilepsy/diagnosis , Fibroblasts/metabolism , Genotyping Techniques , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Mutation , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Proteins/metabolism , Purkinje Cells/metabolism , Spasms, Infantile/diagnosis , Synaptic Vesicles/metabolism , Transcriptome , Ubiquitin/genetics , Ubiquitin/metabolism
5.
Open Biol ; 5(6): 150047, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26063829

ABSTRACT

RAB18, RAB3GAP1, RAB3GAP2 and TBC1D20 are each mutated in Warburg Micro syndrome, a rare autosomal recessive multisystem disorder. RAB3GAP1 and RAB3GAP2 form a binary 'RAB3GAP' complex that functions as a guanine-nucleotide exchange factor (GEF) for RAB18, whereas TBC1D20 shows modest RAB18 GTPase-activating (GAP) activity in vitro. Here, we show that in the absence of functional RAB3GAP or TBC1D20, the level, localization and dynamics of cellular RAB18 is altered. In cell lines where TBC1D20 is absent from the endoplasmic reticulum (ER), RAB18 becomes more stably ER-associated and less cytosolic than in control cells. These data suggest that RAB18 is a physiological substrate of TBC1D20 and contribute to a model in which a Rab-GAP can be essential for the activity of a target Rab. Together with previous reports, this indicates that Warburg Micro syndrome can be caused directly by loss of RAB18, or indirectly through loss of RAB18 regulators RAB3GAP or TBC1D20.


Subject(s)
Abnormalities, Multiple/etiology , Abnormalities, Multiple/pathology , Cataract/congenital , Cornea/abnormalities , Gene Expression Regulation , Hypogonadism/etiology , Hypogonadism/pathology , Intellectual Disability/etiology , Intellectual Disability/pathology , Microcephaly/etiology , Microcephaly/pathology , Optic Atrophy/etiology , Optic Atrophy/pathology , rab GTP-Binding Proteins/metabolism , rab1 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/metabolism , Abnormalities, Multiple/metabolism , Animals , Blotting, Western , Case-Control Studies , Cataract/etiology , Cataract/metabolism , Cataract/pathology , Cells, Cultured , Cornea/metabolism , Cornea/pathology , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Flow Cytometry , Fluorescent Antibody Technique , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Hydrolysis , Hypogonadism/metabolism , Intellectual Disability/metabolism , Mice , Mice, Knockout , Microcephaly/metabolism , Optic Atrophy/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , rab GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/genetics , rab3 GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...