Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Repair (Amst) ; 135: 103634, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290197

ABSTRACT

The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.


Subject(s)
Inflammation , Microglia , Humans , Inflammation/genetics , DNA Damage , Genomic Instability , Homeostasis
2.
Methods Mol Biol ; 2501: 259-275, 2022.
Article in English | MEDLINE | ID: mdl-35857232

ABSTRACT

Electrophysiological approaches to the study of the activity of retinal-containing protein bacteriorhodopsin (bR) or other proteins of this family are based usually on measurements of electrical current through a planar bilayer lipid membrane (BLM) with proteoliposomes attached to the BLM surface at one side of the membrane. Here, we describe the measurements of the pumping activity of bR and channelrhodopsin 2 (ChR2) with special attention to the study of voltage dependence of the light-induced currents. Strong voltage dependence of ChR2 suggests light-triggered ion channel activity of ChR2. We also describe electrophysiological measurements with the help of collodion film instead of BLM for the measurements of fast stages of a rhodopsin photocycle as well as the estimation of the activity of proteoliposomes without a macro membrane using fluorescent probes such as oxonol VI or 9-aminoacridine.


Subject(s)
Bacteriorhodopsins , Rhodopsins, Microbial , Collodion , Fluorescent Dyes , Light , Lipid Bilayers , Proton-Motive Force , Rhodopsin/chemistry , Rhodopsins, Microbial/chemistry
3.
ACS Synth Biol ; 10(1): 72-83, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33325704

ABSTRACT

Protein-fragment complementation assays are used ubiquitously for probing protein-protein interactions. Most commonly, the reporter protein is split in two parts, which are then fused to the proteins of interest and can reassemble and provide a readout if the proteins of interest interact with each other. The currently known split fluorescent proteins either can be used only in aerobic conditions and assemble irreversibly, or require addition of exogenous chromophores, which complicates the design of experiments. In recent years, light-oxygen-voltage (LOV) domains of several photoreceptor proteins have been developed into flavin-based fluorescent proteins (FbFPs) that, under some circumstances, can outperform commonly used fluorescent proteins such as GFP. Here, we show that CagFbFP, a small thermostable FbFP based on a LOV domain-containing protein from Chloroflexus aggregans, can serve as a split fluorescent reporter. We use the available genetic and structural information to identify three loops between the conserved secondary structure elements, Aß-Bß, Eα-Fα, and Hß-Iß, that tolerate insertion of flexible poly-Gly/Ser segments and eventually splitting. We demonstrate that the designed split pairs, when fused to interacting proteins, are fluorescent in vivo in E. coli and human cells and have low background fluorescence. Our results enable probing protein-protein interactions in anaerobic conditions without using exogenous fluorophores and provide a basis for further development of LOV and PAS (Per-Arnt-Sim) domain-based fluorescent reporters and optogenetic tools.


Subject(s)
Bacterial Proteins/metabolism , Flavins/metabolism , Fluorescent Dyes/chemistry , Bacterial Proteins/genetics , Calcium/chemistry , Chloroflexus/metabolism , Endopeptidases/metabolism , Escherichia coli/metabolism , Flavins/chemistry , Fluorescence Resonance Energy Transfer , Protein Domains/genetics , Protein Folding , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...