Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Front Microbiol ; 15: 1320014, 2024.
Article in English | MEDLINE | ID: mdl-38410392

ABSTRACT

Studies of the morphology and the 45S nuc rDNA phylogeny of three potentially undescribed arbuscular mycorrhizal fungi (phylum Glomeromycota) grown in cultures showed that one of these fungi is a new species of the genus Diversispora in the family Diversisporaceae; the other two fungi are new Scutellospora species in Scutellosporaceae. Diversispora vistulana sp. nov. came from maritime sand dunes of the Vistula Spit in northern Poland, and S. graeca sp. nov. and S. intraundulata sp. nov. originally inhabited the Mediterranean dunes of the Peloponnese Peninsula, Greece. In addition, the morphological description of spores of Acaulospora gedanensis, originally described in 1988, was emended based on newly found specimens, and the so far unknown phylogeny of this species was determined. The phylogenetic analyses of 45S sequences placed this species among Acaulospora species with atypical phenotypic and histochemical features of components of the two inner germinal walls.

2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293448

ABSTRACT

Changes in soil microbial communities in response to hydrocarbon pollution are critical indicators of disturbed ecosystem conditions. A core component of these communities that is functionally adjusted to the life-history traits of the host and environmental factors consists of arbuscular mycorrhizal fungi (AMF). AMF communities associated with Poa trivialis and Phragmites australis growing at a phenol and polynuclear aromatic hydrocarbon (PAH)-contaminated site and at an uncontaminated site were compared based on LSU rDNA sequencing. Dissimilarities in species composition and community structures indicated soil pollution as the main factor negatively affecting the AMF diversity. The AMF communities at the contaminated site were dominated by fungal generalists (Rhizophagus, Funneliformis, Claroideoglomus, Paraglomus) with wide ecological tolerance. At the control site, the AMF communities were characterized by higher taxonomic and functional diversity than those exposed to the contamination. The host plant identity was the main driver distinguishing the two AMF metacommunities. The AMF communities at the uncontaminated site were represented by Polonospora, Paraglomus, Oehlia, Nanoglomus, Rhizoglomus, Dominikia, and Microdominikia. Polonosporaceae and Paraglomeraceae were particularly dominant in the Ph. australis mycorrhizosphere. The high abundance of early diverging AMF could be due to the use of primers able to detect lineages such as Paraglomeracae that have not been recognized by previously used 18S rDNA primers.


Subject(s)
Glomeromycota , Microbiota , Mycorrhizae , Polycyclic Aromatic Hydrocarbons , Mycorrhizae/physiology , Soil Microbiology , Phenol , Soil/chemistry , Plants/genetics , Hydrocarbons , DNA, Ribosomal/genetics , Plant Roots/microbiology
3.
Front Microbiol ; 13: 902181, 2022.
Article in English | MEDLINE | ID: mdl-35722319

ABSTRACT

Plants have co-evolved with diverse microorganisms that have developed different mechanisms of direct and indirect interactions with their host. Recently, greater attention has been paid to a direct "message" delivery pathway from bacteria to plants, mediated by the outer membrane vesicles (OMVs). OMVs produced by Gram-negative bacteria play significant roles in multiple interactions with other bacteria within the same community, the environment, and colonized hosts. The combined forces of innovative technologies and experience in the area of plant-bacterial interactions have put pressure on a detailed examination of the OMVs composition, the routes of their delivery to plant cells, and their significance in pathogenesis, protection, and plant growth promotion. This review synthesizes the available knowledge on OMVs in the context of possible mechanisms of interactions between OMVs, bacteria, and plant cells. OMVs are considered to be potential stimulators of the plant immune system, holding potential for application in plant bioprotection.

4.
Chemosphere ; 302: 134830, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35525444

ABSTRACT

Dark septate endophytes (DSEs) comprise a diverse and ubiquitous group of fungal generalists with broad habitat niches that robustly colonize the roots of plants in stressful environments. DSEs possess adaptation strategies that determine their high tolerance to heavy metal (HM) contamination, drought, and salinity. Most DSEs developed efficient melanin-dependent and melanin-independent mechanisms of HM detoxification and osmoprotection, including intracellular immobilization and extracellular efflux of HMs and excess ions, and the scavenging of reactive oxygen species. DSEs form mutualistic relationship with plants according to the hypothesis of "habitat-adapted associations", supporting the survival of their hosts under stressful conditions. As saprophytes, DSEs mineralize a complex soil substrate improving plants' nutrition and physiological parameters. They can protect the host plant from HMs by limiting HM accumulation in plant tissues and causing their sequestration in root cell walls as insoluble compounds, preventing further HM translocation to shoots. The presence of DSE in drought-affected plants can substantially ameliorate the physiology and architecture of root systems, improving their hydraulic properties. Plant growth-promoting features, supported by the versatility and easy culturing of DSEs, determine their high potential to enhance phytoremediation and revegetation projects for HM-contaminated, saline, and desertic lands reclamation.


Subject(s)
Endophytes , Metals, Heavy , Endophytes/physiology , Fungi , Melanins , Plant Roots/microbiology , Plants
5.
Mycologia ; 114(2): 453-466, 2022.
Article in English | MEDLINE | ID: mdl-35358026

ABSTRACT

Three new species of arbuscular mycorrhizal fungi of the genus Diversispora (phylum Glomeromycota) were described based on their morphology and molecular phylogeny. The phylogeny was inferred from the analyses of the partial 45S rDNA sequences (18S-ITS-28S) and the largest subunit of RNA polymerase II (rpb1) gene. These species were associated in the field with plants colonizing maritime sand dunes of the Baltic Sea in Poland and formed mycorrhiza in single-species cultures.


Subject(s)
Glomeromycota , Mycorrhizae , Mycorrhizae/genetics , Phylogeny , Poland , Spores, Fungal
6.
Front Microbiol ; 13: 962856, 2022.
Article in English | MEDLINE | ID: mdl-36643412

ABSTRACT

As a result of phylogenomic, phylogenetic, and morphological analyses of members of the genus Claroideoglomus, four potential new glomoid spore-producing species and Entrophospora infrequens, a new order, Entrophosporales, with one family, Entrophosporaceae (=Claroideoglomeraceae), was erected in the phylum Glomeromycota. The phylogenomic analyses recovered the Entrophosporales as sister to a clade formed by Diversisporales and Glomeraceae. The strongly conserved entrophosporoid morph of E. infrequens, provided with a newly designated epitype, was shown to represent a group of cryptic species with the potential to produce different glomoid morphs. Of the four potential new species, three enriched the Entrophosporales as new Entrophospora species, E. argentinensis, E. glacialis, and E. furrazolae, which originated from Argentina, Sweden, Oman, and Poland. The fourth fungus appeared to be a glomoid morph of the E. infrequens epitype. The physical association of the E. infrequens entrophosporoid and glomoid morphs was reported and illustrated here for the first time. The phylogenetic analyses, using nuc rDNA and rpb1 concatenated sequences, confirmed the previous conclusion that the genus Albahypha in the family Entrophosporaceae sensu Oehl et al. is an unsupported taxon. Finally, the descriptions of the Glomerales, Entrophosporaceae, and Entrophospora were emended and new nomenclatural combinations were introduced.

7.
Molecules ; 26(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684850

ABSTRACT

Four procedures based on closed-vessel microwave-assisted wet digestion with different oxidative reagents, including HNO3 (P1), HNO3 + H2O2 (P2), aqua regia (P3) and Lefort aqua regia (P4), for preparation of calcium (Ca)-rich materials prior to determination of total concentrations of Al, Ca, Cd, Fe, Mg and P by inductively coupled optical emission spectrometry (ICP OES) were compared. It was found that digestion with Lefort aqua regia (P4) provided the best results for all examined elements, i.e., precision of 0.30-4.4%, trueness better than 2%, recoveries of added elements between 99.5-101.9%, and limits of detection within 0.08-1.8 ng g-1. Reliability of this procedure was verified by analysis of relevant certified reference materials (CRMs), i.e., Natural Moroccan Phosphate Rock-Phosphorite (BCR-O32). Additionally, selection of appropriate analytical lines for measurements of element concentrations, linear dynamic ranges of calibration curves and matrix effects on the analyte response were extensively investigated. Finally, the selected procedure was successfully applied for routine analysis of other Ca-rich materials, i.e., CRMs such as NIST 1400 (Bone Ash), CTA-AC-1 (Apatite Concentrate Kola Peninsula) and NCS DC70308 (Carbonate Rock), and six natural samples, such as a dolomite, a phosphate rock, an enriched superphosphate fertilizer, pork bones, pork bones after incineration, and after steam gasification.

8.
Ecotoxicol Environ Saf ; 217: 112252, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33930772

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.


Subject(s)
Hydrocarbons/toxicity , Lolium/physiology , Mycorrhizae/physiology , Soil Pollutants/toxicity , Antioxidants , Biodegradation, Environmental , Fungi , Glomeromycota/physiology , Lolium/drug effects , Oxidative Stress/physiology , Plant Development , Plant Roots/microbiology , Polycyclic Aromatic Hydrocarbons , Symbiosis
9.
Ecotoxicol Environ Saf ; 192: 110299, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32058165

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.


Subject(s)
Mycorrhizae/isolation & purification , Phenol/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Microbiology , Soil Pollutants/analysis , Biodiversity , Biomass , Host Specificity , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/growth & development , Poaceae/classification , Poaceae/microbiology , Soil/chemistry
10.
Mycologia ; 111(6): 965-980, 2019.
Article in English | MEDLINE | ID: mdl-31560606

ABSTRACT

We examined three arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota) producing glomoid spores. The mode of formation and morphology of these spores suggested that they represent undescribed species in the genus Rhizoglomus of the family Glomeraceae. Subsequent morphological studies of the spores and molecular phylogenetic analyses of sequences of the nuc rDNA small subunit (18S), internal transcribed spacer (ITS1-5.8S-ITS2 = ITS), and large subunit (28S) region (= 18S-ITS-28S) confirmed the suggestion and indicated that the fungi strongly differ from all previously described Rhizoglomus species with known DNA barcodes. Consequently, the fungi were described here as new species: R. dalpeae, R. maiae, and R. silesianum. Two of these species lived hypogeously in the field in habitats subjected to strong environmental stresses. Rhizoglomus dalpeae originated from an inselberg located within Guineo-Sudanian transition savanna zone in Benin, West Africa, where the temperature of the inselberg rock during a 5-mo drought ranges from 40 to 60 C. Rhizoglomus silesianum originated from a coal mine spoil heap in Poland, whose substrate is extremely poor in nutrients, has unfavorable texture, and may heat up to 50 C. By contrast, R. maiae was found in more favorable habitat conditions. It produced an epigeous cluster of spores among shrubs growing in a tropical humid reserve in Brazil. Moreover, the compatibility of phylogenies of species of the family Glomeraceae reconstructed from analyses of sequences of 18S-ITS-28S and the largest subunit of RNA polymerase II (RPB1) gene was discussed.


Subject(s)
Glomeromycota/classification , Phylogeny , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Glomeromycota/isolation & purification , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 5.8S/genetics , Rhizosphere , Sequence Analysis, DNA , Spores, Fungal/physiology
11.
Sci Total Environ ; 624: 1119-1124, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29625526

ABSTRACT

Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments.

12.
Waste Manag ; 46: 488-96, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26282888

ABSTRACT

Screened multiwire, PVC insulated tinned copper cable was gasified with steam at high temperature (HTSG) under atmospheric pressure for recovery of cooper. Gases from the process were additionally equilibrated at 850°C on the bed of calcined clay granules and more than 98% of C+H content in the cable was transformed to non-condensing species. Granules prepared from local clay were generally resistant for chlorination, there was also almost no deposition of metals, Cu and Sn, on the catalytic bed. It was found that 28% of chlorine reacted to form CaCl2, 71% was retained in aqueous condensate and only 0.6% was absorbed in alkaline scrubber. More than 99% of calcium existed in the process solid residue as a mixture of calcium chloride and calcium oxide/hydroxide. PVC and other hydrocarbon constituents were completely removed from the cable sample. Copper was preserved in original form and volatilization of copper species appeared insignificant. Tin was alloying with copper and its volatilization was less than 1%. Fractionation and speciation of metals, chlorine and calcium were discussed on the basis of equilibrium model calculated with HSC Chemistry software. High temperature steam gasification prevents direct use of the air and steam/water is in the process simultaneously gaseous carrier and reagent, which may be recycled together with hydrocarbon condensates.


Subject(s)
Copper/analysis , Hot Temperature , Polyvinyl Chloride/chemistry , Recycling/methods , Waste Management/methods , Steam , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...