Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 102: 526-538, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28414109

ABSTRACT

The main aim of present study was to prepare chitosan (CS) and chitosan nanoparticles (CS/NPs) to evaluate their antifungal and oxidative activity. CS/NPs were prepared based on the ionic gelation of CS with tripolyphosphate (TPP) anions by using centrifugation and pH change. The obtained nanoparticles (NPs) were characterized by size and zeta potential analysis. The antifungal activity of the CS and CS/NPs were evaluated on the Fusarium graminearum, which causes Fusarium head blight (FHB) on wheat by the method of spraying on the Potato dextrose agar (PDA) medium. The Dynamic light scattering (DLS) indicated that particle diameter (z-average) was approximately 180.9±35.5-339.4±50.9 and 225.7±42.81-595.7±81.7nm for NPs prepared from CS with different molecular weights by using centrifugation and pH change methods, respectively. Different concentrations of CS and NPs were tested to know the inhibitory effect of F. graminearum. Low molecular weight (LMW) CS and its NPs had high potential of antifungal activity on suppress of fungus growth. The maximum percentage of growth reduction was 68.18%, and 77.5% by CS and its NPs at concentrations of 1000 and 5000ppm, respectively. In greenhouse trials, at 28days after inoculation (dpi), the area under the disease progress curve (AUDPC) from 7 dpi to 28 dpi of control plants treated with acetic acid aqueous solution and distilled water was almost up to 7.36 and 7.7, respectively, while plants treated with CS and NPs only had approximately 3.61 and 3.34, respectively. Results revealed that H2O2 accumulations displayed a different pattern during the activation of plant defense systems, it had brownish sites on the infected palea. Since 24h post inoculation (hpi), the H2O2 accumulations were shown in both CS and NPs, and the elevated H2O2 accumulation appeared in 72 hpi in both treatments. CS and NPs at high concentration increased the degree of tissue and cell injury. The obtained results clearly suggest that CS and its NPs have remarkable potential for further field screening towards crop protection.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Fusarium/drug effects , Fusarium/physiology , Nanoparticles , Triticum/metabolism , Triticum/microbiology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chitosan/chemical synthesis , Hydrogen Peroxide/metabolism , Molecular Weight , Oxidation-Reduction , Particle Size , Plant Diseases/microbiology , Superoxides/metabolism , Surface Properties , Triticum/drug effects
2.
Int J Biol Macromol ; 93(Pt A): 1261-1272, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27664927

ABSTRACT

Fusarium head blight (FHB) disease caused by Fusarium graminearum is one of the most important diseases of wheat in humid and warm areas. This disease significantly reduces yield as well as seed quality. The aim of this work was to evaluate the possibility of control of FHB by chitosan (CS) and chitosan nanoparticles (CS/NPs). In vitro, the application of various concentrations of CS and CS/NPs showed significant inhibition of both radial mycelial growth and number of colonies formed against F. graminearum. The application of 1000 and 5000ppm concentration of CS and CS/NPs produced maximum inhibition of radial mycelial growth in comparison to the control, respectively. The microscopic examination, of treated F. graminearum with the CS and CS/NPs, showed dehydration and deformation in mycelial growth and some hyphae were collapsed. The maximum percentage reduction number of colonies was observed in 5000ppm concentration of both CS and CS/NPs. To test the effect of CS and CS/NPs on spore germination, four concentrations were used for 4 and 24h incubation. The 24h incubation of F. graminearum spores with a 5000ppm solution of CS greatly reduced the number of germinating spores. In greenhouse trials, the disease severity percentage was low when CS and CS/NPs were applied before fungus inoculation on the plants and 1000ppm concentration. The spores of F. graminearum germinated on the anther, hyphae penetrated into anther and colonized the palea, lemma and glume after 24 and 72 hpi, respectively. Wherease, the spikelets treated with CS and CS/NPs were infected slowly. Light microscopy and TEM observations indicated that mycelium penetrated into the cells through stoma and transited to other cells by cell wall or plasmodesmata. Mycelial growth caused conidia into cells but CS and CS/NPs prevented of it's growth. Results showed that CS and CS/NPs could be a useful biological pesticide for controlling FHB.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Environment, Controlled , Fusarium/drug effects , Fusarium/physiology , Nanoparticles , Triticum/microbiology , Dose-Response Relationship, Drug , Fusarium/growth & development , Mycelium/drug effects , Mycelium/growth & development , Particle Size , Plant Diseases/microbiology , Spores, Fungal/drug effects , Spores, Fungal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...