Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304490, 2024.
Article in English | MEDLINE | ID: mdl-38833492

ABSTRACT

Inhibition of acetylcholinesterase (AChE) is a crucial target in the treatment of Alzheimer's disease (AD). Common anti-acetylcholinesterase drugs such as Galantamine, Rivastigmine, Donepezil, and Tacrine have significant inhibition potential. Due to side effects and safety concerns, we aimed to investigate a wide range of phytochemicals and structural analogues of these compounds. Compounds similar to the established drugs, and phytochemicals were investigated as potential inhibitors for AChE in treating AD. A total of 2,270 compound libraries were generated for further analysis. Initial virtual screening was performed using Pyrx software, resulting in 638 molecules showing higher binding affinities compared to positive controls Tacrine (-9.0 kcal/mol), Donepezil (-7.3 kcal/mol), Galantamine (-8.3 kcal/mol), and Rivastigmine (-6.4 kcal/mol). Subsequently, ADME properties were assessed, including blood-brain barrier permeability and Lipinski's rule of five violations, leading to 88 compounds passing the ADME analysis. Among the rivastigmine analogous, [3-(1-methylpiperidin-2-yl)phenyl] N,N-diethylcarbamate showed interaction with Tyr123, Tyr336, Tyr340, Phe337, Trp285 residues of AChE. Tacrine similar compounds, such as 4-amino-2-styrylquinoline, exhibited bindings with Tyr123, Phe337, Tyr336, Trp285, Trp85, Gly119, and Gly120 residues. A phytocompound (bisdemethoxycurcumin) showed interaction with Trp285, Tyr340, Trp85, Tyr71, and His446 residues of AChE with favourable binding. These findings underscore the potential of these compounds as novel inhibitors of AChE, offering insights into alternative therapeutic avenues for AD. A 100ns simulation analysis confirmed the stability of protein-ligand complex based on the RMSD, RMSF, ligand properties, PCA, DCCM and MMGBS parameters. The investigation suggested 3 ligands as a potent inhibitor of AChE which are [3-(1-methylpiperidin-2-yl)phenyl] N,N-diethylcarbamate, 4-Amino-2-styrylquinoline and bisdemethoxycurcumin. Furthermore, investigation, including in-vitro and in-vivo studies, is needed to validate the efficacy, safety profiles, and therapeutic potential of these compounds for AD treatment.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/pharmacokinetics , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Humans , Blood-Brain Barrier/metabolism
2.
Curr Top Med Chem ; 23(30): 2844-2862, 2023.
Article in English | MEDLINE | ID: mdl-38031798

ABSTRACT

Cancer is considered one of the deadliest diseases globally, and continuous research is being carried out to find novel potential therapies for myriad cancer types that affect the human body. Researchers are hunting for innovative remedies to minimize the toxic effects of conventional therapies being driven by cancer, which is emerging as pivotal causes of mortality worldwide. Cancer progression steers the formation of heterogeneous behavior, including self-sustaining proliferation, malignancy, and evasion of apoptosis, tissue invasion, and metastasis of cells inside the tumor with distinct molecular features. The complexity of cancer therapeutics demands advanced approaches to comprehend the underlying mechanisms and potential therapies. Precision medicine and cancer therapies both rely on drug discovery. In vitro drug screening and in vivo animal trials are the mainstays of traditional approaches for drug development; however, both techniques are laborious and expensive. Omics data explosion in the last decade has made it possible to discover efficient anti-cancer drugs via computational drug discovery approaches. Computational techniques such as computer-aided drug design have become an essential drug discovery tool and a keystone for novel drug development methods. In this review, we seek to provide an overview of computational drug discovery procedures comprising the target sites prediction, drug discovery based on structure and ligand-based design, quantitative structure-activity relationship (QSAR), molecular docking calculations, and molecular dynamics simulations with a focus on cancer therapeutics. The applications of artificial intelligence, databases, and computational tools in drug discovery procedures, as well as successfully computationally designed drugs, have been discussed to highlight the significance and recent trends in drug discovery against cancer. The current review describes the advanced computer-aided drug design methods that would be helpful in the designing of novel cancer therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Humans , Molecular Docking Simulation , Computer-Aided Design , Artificial Intelligence , Drug Design , Drug Discovery , Neoplasms/drug therapy , Antineoplastic Agents/chemistry
3.
PLoS One ; 18(5): e0285965, 2023.
Article in English | MEDLINE | ID: mdl-37200367

ABSTRACT

Kidney disorders are among the most common diseases and there is a scarcity of effective treatments for chronic kidney disease. There has been a progressive improvement in specific flavonoids for protective effects against kidney diseases. Flavonoids inhibit the regulatory enzymes to control inflammation-related diseases. In the present study, a hybrid approach of molecular docking analyses and molecular dynamic simulation was followed by principal component analyses and a dynamics cross-correlation matrix. In the present study, the top-ranked five flavonoids were reported, and the maximum binding affinity was observed against AIM2. Molecular docking analyses revealed that Glu_186, Phe_187, Lys_245, Glu_248, Ile_263, and Asn_265 are potent residues against AIM2 for ligand-receptor interactions. Extensive in silico analyses suggested that procyanidin is a potential molecule against AIM2. Moreover, the site-directed mutagenesis for the reported interacting residues of AIM2 could be important for further in vitro analyses. The observed novel results based on extensive computational analyses may be significant for potential drug design against renal disorders by targeting AIM2.


Subject(s)
Flavonoids , Kidney Diseases , Humans , Molecular Docking Simulation , Flavonoids/pharmacology , Flavonoids/metabolism , Molecular Dynamics Simulation , Drug Design , DNA-Binding Proteins/metabolism
4.
PLoS One ; 18(4): e0284993, 2023.
Article in English | MEDLINE | ID: mdl-37099543

ABSTRACT

Nitric Oxide (NO) signaling pathway plays a vital role in various physiological and pathophysiological processes including vasodilation, neurogenesis, inflammation, translation and protein regulation. NO signaling pathway is associated with various diseases such as cardiovascular diseases, vision impairment, hypertension and Alzheimer's disease. Human Endothelial Nitric Oxide Synthase (eNOS) bound with calcium regulatory protein (calmodulin (CaM)) to produce NO which initiates cGMP pathway. The current study employs to screen the novel compounds against human eNOS independent of calcium regulatory protein (CaM). The current effort emphasized that the deficiency of CaM leads to dysfunction of cGMP signaling pathway. In this work, a hybrid approach of high-throughput virtual screening and comparative molecular docking studies followed by molecular dynamic simulation analyses were applied. The screening of top ranked two novel compounds against eNOS were reported that showed effective binding affinity, retrieved through the DrugBank and ZINC database libraries. Comparative molecular docking analyses revealed that Val-104, Phe-105, Gln-247, Arg-250, Ala-266, Trp-330, Tyr-331, Pro-334, Ala-335, Val-336, Tyr-357, Met-358, Thr-360, Glu-361, Ile-362, Arg-365, Asn-366, Asp-369, Arg-372, Trp-447 and Tyr-475 are potent residues for interactional studies. High-throughput virtual screening approach coupled with molecular dynamic simulation and drug likeness rules depicted that ZINC59677432 and DB00456 are potent compounds to target eNOS. In conclusion, the proposed compounds are potent against eNOS based on extensive in silico analyses. Overall, the findings of this study may be helpful to design therapeutic targets against eNOS.


Subject(s)
Calcium , Nitric Oxide Synthase Type III , Humans , Trypsin , Molecular Docking Simulation , Amino Acid Sequence , Calmodulin , Peptide Fragments
5.
Curr Neuropharmacol ; 21(5): 1026-1041, 2023.
Article in English | MEDLINE | ID: mdl-36918785

ABSTRACT

With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.


Subject(s)
Mitochondria , Mitophagy , Humans , Mitophagy/physiology , Mitochondria/metabolism , Membrane Potential, Mitochondrial , Antimycin A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...