Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Brain ; 12(1): 100, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31783880

ABSTRACT

Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.


Subject(s)
Autophagy , Lysosomes/pathology , Neurodegenerative Diseases/pathology , Animals , Endosomes/metabolism , Humans , Molecular Chaperones/metabolism , Signal Transduction
2.
Front Cell Neurosci ; 13: 260, 2019.
Article in English | MEDLINE | ID: mdl-31244615

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and is characterized by intracellular neurofibrillary tangles of hyperphosphorylated Tau, including the 0N4R isoform and accumulation of extracellular amyloid beta (Aß) plaques. However, less than 5% of AD cases are familial, with many additional risk factors contributing to AD including aging, lifestyle, the environment and epigenetics. Recent epigenome-wide association studies (EWAS) of AD have identified a number of loci that are differentially methylated in the AD cortex. Indeed, hypermethylation and reduced expression of the Ankyrin 1 (ANK1) gene in AD has been reported in the cortex in numerous different post-mortem brain cohorts. Little is known about the normal function of ANK1 in the healthy brain, nor the role it may play in AD. We have generated Drosophila models to allow us to functionally characterize Drosophila Ank2, the ortholog of human ANK1 and to determine its interaction with human Tau and Aß. We show expression of human Tau 0N4R or the oligomerizing Aß 42 amino acid peptide caused shortened lifespan, degeneration, disrupted movement, memory loss, and decreased excitability of memory neurons with co-expression tending to make the pathology worse. We find that Drosophila with reduced neuronal Ank2 expression have shortened lifespan, reduced locomotion, reduced memory and reduced neuronal excitability similar to flies overexpressing either human Tau 0N4R or Aß42. Therefore, we show that the mis-expression of Ank2 can drive disease relevant processes and phenocopy some features of AD. Therefore, we propose targeting human ANK1 may have therapeutic potential. This represents the first study to characterize an AD-relevant gene nominated from EWAS.

3.
Hum Mol Genet ; 24(21): 6106-17, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26251041

ABSTRACT

Mutations in VPS35 (PARK17) cause autosomal dominant, late onset Parkinson's disease (PD). VPS35 forms a core component of the retromer complex that mediates the retrieval of membrane proteins from endosomes back to either the Golgi or plasma membrane. While aberrant endosomal protein sorting has been linked to several neurodegenerative diseases, the mechanisms by which VPS35 mutations and retromer function contribute to PD pathogenesis are not clear. To address this, we generated transgenic Drosophila that express variant forms of human VPS35 found in PD cases and the corresponding variants of the Drosophila ortholog. We did not find evidence of dominant toxicity from any variant form including the pathogenic D620N mutation, even with aging. However, assessing the ability of Vps35 variants to rescue multiple vps35-mutant phenotypes, we found that the D620N mutation confers a partial loss of function. Recently, VPS35 has been linked to the formation of mitochondria-derived vesicles, which mediate the degradation of mitochondrial proteins and contribute to mitochondrial quality control. This process is also promoted by two other PD-lined genes parkin (PARK2) and PINK1 (PARK6). We demonstrate here that vps35 genetically interacts with parkin but interestingly not with pink1. Strikingly, Vps35 overexpression is able to rescue several parkin-mutant phenotypes. Together these findings provide in vivo evidence that the D620N mutation likely confers pathogenicity through a partial loss of function mechanism and that this may be linked to other known pathogenic mechanisms such as mitochondrial dysfunction.


Subject(s)
Drosophila Proteins/genetics , Parkinson Disease/genetics , Ubiquitin-Protein Ligases/genetics , Vesicular Transport Proteins/genetics , Animals , Disease Models, Animal , Drosophila , Humans , Male , Mutation , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/metabolism , Vesicular Transport Proteins/metabolism
4.
J Vis Exp ; (90): e50107, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25145496

ABSTRACT

Drosophila have been used in classical conditioning experiments for over 40 years, thus greatly facilitating our understanding of memory, including the elucidation of the molecular mechanisms involved in cognitive diseases. Learning and memory can be assayed in larvae to study the effect of neurodevelopmental genes and in flies to measure the contribution of adult plasticity genes. Furthermore, the short lifespan of Drosophila facilitates the analysis of genes mediating age-related memory impairment. The availability of many inducible promoters that subdivide the Drosophila nervous system makes it possible to determine when and where a gene of interest is required for normal memory as well as relay of different aspects of the reinforcement signal. Studying memory in adult Drosophila allows for a detailed analysis of the behavior and circuitry involved and a measurement of long-term memory. The length of the adult stage accommodates longer-term genetic, behavioral, dietary and pharmacological manipulations of memory, in addition to determining the effect of aging and neurodegenerative disease on memory. Classical conditioning is induced by the simultaneous presentation of a neutral odor cue (conditioned stimulus, CS(+)) and a reinforcement stimulus, e.g., an electric shock or sucrose, (unconditioned stimulus, US), that become associated with one another by the animal. A second conditioned stimulus (CS(-)) is subsequently presented without the US. During the testing phase, Drosophila are simultaneously presented with CS+ and CS- odors. After the Drosophila are provided time to choose between the odors, the distribution of the animals is recorded. This procedure allows associative aversive or appetitive conditioning to be reliably measured without a bias introduced by the innate preference for either of the conditioned stimuli. Various control experiments are also performed to test whether all genotypes respond normally to odor and reinforcement alone.


Subject(s)
Drosophila/physiology , Learning/physiology , Memory/physiology , Olfactory Perception/physiology , Animals , Conditioning, Classical
5.
Front Neurosci ; 8: 178, 2014.
Article in English | MEDLINE | ID: mdl-25009461

ABSTRACT

Calcium (Ca(2+)) and Calmodulin (CaM)-dependent serine/threonine kinase II (CaMKII) plays a central role in synaptic plasticity and memory due to its ability to phosphorylate itself and regulate its own kinase activity. Autophosphorylation at threonine 287 (T287) switches CaMKII to a Ca(2+) independent and constitutively active state replicated by overexpression of a phosphomimetic CaMKII-T287D transgene or blocked by expression of a T287A transgene. A second pair of sites, T306 T307 in the CaM binding region once autophosphorylated, prevents CaM binding and inactivates the kinase during synaptic plasticity and memory, and can be blocked by a TT306/7AA transgene. Recently the synaptic scaffolding molecule called CASK (Ca(2+)/CaM-associated serine kinase) has been shown to control both sets of CaMKII autophosphorylation events during neuronal growth, Ca(2+) signaling and memory in Drosophila. Deletion of either full length CASK or just its CaMK-like and L27 domains removed middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α'/ß' mushroom body neurons being required for memory. In a similar manner directly changing the levels of CaMKII autophosphorylation (T287D, T287A, or TT306/7AA) in the α'/ß' neurons also removed MTM and LTM. In the CASK null mutant expression of either the Drosophila or human CASK transgene in the α'/ß' neurons was found to completely rescue memory, confirming that CASK signaling in α'/ß' neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. Expression of human CASK in Drosophila also rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. Mutations in human CASK have recently been shown to result in intellectual disability and neurological defects suggesting a role in plasticity and learning possibly via regulation of CaMKII autophosphorylation.

6.
PLoS One ; 8(4): e62445, 2013.
Article in English | MEDLINE | ID: mdl-23638087

ABSTRACT

In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ) when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/ßneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment.


Subject(s)
Drosophila/physiology , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism , Memory , Mutation , Aging , Animals , Drosophila/drug effects , Drosophila/genetics , Ethanol/adverse effects , Gene Expression Regulation , Memory/drug effects , Memory, Short-Term , Mushroom Bodies/cytology , Mushroom Bodies/metabolism , Neurons/cytology , Neurons/metabolism , Signal Transduction
7.
Article in English | MEDLINE | ID: mdl-23543616

ABSTRACT

Ca(2+)/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca(2+)) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca(2+)/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α'/ß' subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α'/ß' neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α'/ß' neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α'/ß' neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α'/ß' neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α'/ß' neurons increased activity dependent Ca(2+) responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α'/ß' similarly decreased Ca(2+) signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway required for memory formation that involves activity dependent changes in Ca(2+) signaling in the α'/ß' neurons.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Guanylate Kinases/physiology , Memory/physiology , Mushroom Bodies/physiology , Neurons/physiology , Animals , Animals, Genetically Modified , Drosophila , Humans
8.
Nat Neurosci ; 11(7): 799-806, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18536710

ABSTRACT

Understanding the origins and evolution of synapses may provide insight into species diversity and the organization of the brain. Using comparative proteomics and genomics, we examined the evolution of the postsynaptic density (PSD) and membrane-associated guanylate kinase (MAGUK)-associated signaling complexes (MASCs) that underlie learning and memory. PSD and MASC orthologs found in yeast carry out basic cellular functions to regulate protein synthesis and structural plasticity. We observed marked changes in signaling complexity at the yeast-metazoan and invertebrate-vertebrate boundaries, with an expansion of key synaptic components, notably receptors, adhesion/cytoskeletal proteins and scaffold proteins. A proteomic comparison of Drosophila and mouse MASCs revealed species-specific adaptation with greater signaling complexity in mouse. Although synaptic components were conserved amongst diverse vertebrate species, mapping mRNA and protein expression in the mouse brain showed that vertebrate-specific components preferentially contributed to differences between brain regions. We propose that the evolution of synapse complexity around a core proto-synapse has contributed to invertebrate-vertebrate differences and to brain specialization.


Subject(s)
Cytoskeletal Proteins/metabolism , Evaluation Studies as Topic , Nerve Tissue Proteins/metabolism , Proteome , Synapses/metabolism , Animals , Apoptosis Regulatory Proteins , Behavior, Animal , Brain/cytology , Brain/metabolism , Brain Mapping , CARD Signaling Adaptor Proteins , Cytoskeletal Proteins/genetics , Drosophila , Gene Expression , Mice , Nerve Tissue Proteins/genetics , Neurons/metabolism , Proteomics/methods , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...