Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 6(10): e25815, 2011.
Article in English | MEDLINE | ID: mdl-21991360

ABSTRACT

Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Models, Molecular , Pharmaceutical Preparations/metabolism , Support Vector Machine , Biological Transport , Crystallography, X-Ray , Databases as Topic , Humans , Internet , Pharmaceutical Preparations/chemistry , Reproducibility of Results , Rhodamines/chemistry
2.
Bioinformatics ; 27(13): 1806-13, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21593135

ABSTRACT

MOTIVATION: Human serum albumin (HSA), the most abundant plasma protein is well known for its extraordinary binding capacity for both endogenous and exogenous substances, including a wide range of drugs. Interaction with the two principal binding sites of HSA in subdomain IIA (site 1) and in subdomain IIIA (site 2) controls the free, active concentration of a drug, provides a reservoir for a long duration of action and ultimately affects the ADME (absorption, distribution, metabolism, and excretion) profile. Due to the continuous demand to investigate HSA binding properties of novel drugs, drug candidates and drug-like compounds, a support vector machine (SVM) model was developed that efficiently predicts albumin binding. Our SVM model was integrated to a free, web-based prediction platform (http://albumin.althotas.com). Automated molecular docking calculations for prediction of complex geometry are also integrated into the web service. The platform enables the users (i) to predict if albumin binds the query ligand, (ii) to determine the probable ligand binding site (site 1 or site 2), (iii) to select the albumin X-ray structure which is complexed with the most similar ligand and (iv) to calculate complex geometry using molecular docking calculations. Our SVM model and the potential offered by the combined use of in silico calculation methods and experimental binding data is illustrated.


Subject(s)
Pharmaceutical Preparations/metabolism , Serum Albumin/metabolism , Artificial Intelligence , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Serum Albumin/chemistry
3.
J Comput Aided Mol Des ; 24(8): 713-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20521083

ABSTRACT

Cyclodextrins are cyclic oligosaccharides that are able to form water-soluble inclusion complexes with small molecules. Because of their complexing ability, they are widely applied in food, pharmaceutical and chemical industries. In this paper we describe the development of a free web-service, Cyclodextrin KnowledgeBase: ( http://www.cyclodextrin.net ). The database contains four modules: the Publication, Interaction, Chirality and Analysis Modules. In the Publication Module, almost 50,000 publication details are collected that can be retrieved by text search. In the Interaction and Chirality Modules relevant literature data on cyclodextrin complexation and chiral recognition are collected that can be retrieved by both text and structural searches. Moreover, in the Analysis Module, the geometries of small molecule-cyclodextrin complexes can be predicted using molecular docking tools in order to explore the structures and interaction energies of the inclusion complexes. Complex geometry prediction is made possible by the built-in database of 95 cyclodextrin derivatives, where the 3D structures as well as the partial charges are calculated and stored for further utilization. The use of the database is demonstrated by several examples.


Subject(s)
Cyclodextrins/chemistry , Cyclodextrins/metabolism , Knowledge Bases , Animals , Computer-Aided Design , Humans , Ligands , Models, Chemical , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL