Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893582

ABSTRACT

Although the crystals of coordination polymer {[CuCl(µ-O,O'-L-Br2Tyr)]}n (1) (L-Br2Tyr = 3,5-dibromo-L-tyrosine) were formed under basic conditions, crystallographic studies revealed that the OH group of the ligand remained protonated. Two adjacent [CuCl(L-Br2Tyr)] monomers, bridged by the carboxylate group of the ligand in the syn-anti bidentate bridging mode, are differently oriented to form a polymeric chain; this specific bridging was detected also by FT-IR and EPR spectroscopy. Each Cu(II) ion in polymeric compound 1 is coordinated in the xy plane by the amino nitrogen and carboxyl oxygen of the parent ligand and the oxygen of the carboxyl group from the symmetry related ligand of the adjacent [Cu(L-Br2Tyr)Cl] monomer, as well as an independent chlorine ion. In addition, the Cu(II) ion in the polymer chain participates in long-distance intermolecular contacts with the oxygen and bromine atoms of the ligands located in the adjacent chains; these intramolecular contacts were also supported by NCI and NBO quantum chemical calculations and Hirshfeld surface analysis. The resulting elongated octahedral geometry based on the [CuCl(L-Br2Tyr)] monomer has a lower than axial symmetry, which is also reflected in the symmetry of the calculated molecular EPR g tensor. Consequently, the components of the d-d band obtained by analysis of the NIR-VIS-UV spectrum were assigned to the corresponding electronic transitions.

2.
J Inorg Biochem ; 257: 112601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744143

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid - ß extracellular plaques and tau interfibrillar tangles, leading to memory loss, cognitive decline, and behavioral changes. With dementia posing a growing global health concern, there is an urgent need for comprehensive strategies to address its challenges. The economic burden of dementia is projected to rise significantly, emphasizing the necessity for collaborative efforts in research and healthcare. In the United States alone, millions are affected by AD, with prevalence increasing with age and even affecting younger individuals. The complexity of AD involves intricate biological processes, including the aggregation of amyloid beta, oxidative stress, and metal ion dysregulation. Metal ions, particularly those from copper, iron, and zinc, play pivotal roles in AD pathology, influencing Aß deposition and tau protein accumulation. Current treatments offer symptomatic relief but do not address the underlying disease mechanisms. This paper explores the potential of various chelating compounds to target metal ions involved in AD pathology. N-acylhydrazones, morpholine, chrysin, quinoline, oxindole, cyclam, catechol-based, and quinazolinone-based derivatives show promising chelation activity and therapeutic effects. Metal chelation therapy offers a targeted approach to AD treatment by addressing the core pathology. By selectively binding to metal ions implicated in disease progression, chelators may minimize side effects associated with broad-spectrum treatments. Additionally, chelators may offer neuroprotective effects beyond metal binding, further enhancing their therapeutic potential. Overall, metal chelation therapy presents a promising strategy in combating AD, with the potential to significantly impact disease progression and improve patient outcomes.


Subject(s)
Alzheimer Disease , Chelating Agents , Copper , Zinc , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Chelating Agents/therapeutic use , Chelating Agents/chemistry , Copper/chemistry , Copper/metabolism , Zinc/therapeutic use , Zinc/chemistry , Zinc/metabolism , Iron/metabolism , Iron/chemistry , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors
3.
J Phys Chem Lett ; 14(49): 11117-11124, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38054438

ABSTRACT

Wide spectral wavelength range (500-1600 nm) measurements of nonlinear optical properties of silver sulfide (Ag2S, with 2- or 3-mercaptopropionic acid, 2 or 3MPA ligands) quantum dots (QDs) in aqueous colloidal solutions were performed using the Z-scan technique with tunable ∼55 fs laser pulses at 1 kHz. We have identified regions of the occurrence of various NLO effects including two-photon absorption, nonlinear refraction, as well as saturation of one-photon absorption. At the same time, we evaluated the relationship between the properties of the QDs and the variation of the material that covers their surface. The peak two-photon absorption cross section (σ2) values were determined to be 632 ± 271 GM (at 850 nm) for Ag2S-2MPA QDs and 772 ± 100 GM (at 875 nm) for Ag2S-3MPA QDs. The physicochemical factors influencing the three-dimensional self-organization of Ag2S QDs in water as well as their impact on spectroscopic properties were also investigated.

4.
Inorg Chem ; 61(48): 19261-19273, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36383699

ABSTRACT

Novel heteronuclear IrIII-CuII coordination compounds ([Ir(η5-Cp*)Cl2Pcfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (1), [Ir(η5-Cp*)Cl2Pnfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (2), [Ir(η5-Cp*)Cl2Plfx-Cu(phen)](NO3)·1.3(H2O)·1.95(CH3OH) (3), [Ir(η5-Cp*)Cl2Psfx-Cu(phen)] (4)) bearing phosphines derived from fluoroquinolones, namely, sparfloxacin (Hsfx), ciprofloxacin (Hcfx), lomefloxacin (Hlfx), and norfloxacin (Hnfx), have been synthesized and studied as possible anticancer chemotherapeutics. All compounds have been characterized by electrospray ionization mass spectrometry (ESI-MS), a number of spectroscopic methods (i.e., IR, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, variable-temperature magnetic susceptibility measurements, and X-ray diffractometry. The coordination geometry of IrIII in all complexes adopts a characteristic piano-stool geometry with the η5-coordinated and three additional sites occupied by two chloride and phosphine ligands, while CuII ions in complexes 1 and 2 form a distorted square-pyramidal coordination geometry, and in complex 3, the coordination geometry around CuII ions is a distorted octahedron. Interestingly, the crystal structure of [Ir(η5-Cp*)Cl2Plfx-Cu(phen)] features the one-dimensional (1D) metal-organic polymer. Liposomes loaded with redox-active and fluorescent [Ir(η5-Cp*)Cl2Pcfx-Cu(phen)] (1L) have been prepared to increase water solubility and minimize serious systemic side effects. It has been proven, by confocal microscopy and an inductively coupled plasma mass spectrometry (ICP-MS) analysis, that the liposomal form of compound 1 can be effectively accumulated inside human lung adenocarcinoma and human prostate carcinoma cells with selective localization in nuclei. A cytometric analysis showed dominance of apoptosis over the other cell death types. Furthermore, the investigated nanoformulations induced changes in the cell cycle, leading to S phase arrest in a dose-dependent manner. Importantly, in vitro anticancer action on three-dimensional (3D) multicellular tumor spheroids has been demonstrated.


Subject(s)
Carcinoma , Coordination Complexes , Humans , Male , Copper/chemistry , Liposomes , Prostate , Ions , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray
5.
RSC Adv ; 12(42): 27648-27665, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36276031

ABSTRACT

Copper(ii) complexes with 2-ethylpyridine (1 and 2), 2-(hydroxyethyl)pyridine (3) and 2-(hydroxymethyl)pyridine (4) have been synthesized and characterized. All inorganic compounds have been studied by X-ray diffraction, thermogravimetry, vibrational and EPR spectroscopy as well as theoretical methods. The geometry of the complexes 1, 3 and 4 adopts nearly perfect geometry close to square planar (1, 4) or square pyramid (3) stereochemistry, respectively. The distortion of five coordinated copper(ii) ions in complex 2 indicates intermediate geometry between square pyramidal and trigonal pyramidal geometry. Further, the magnetic measurements have shown antiferromagnetic behaviour of the prepared complexes in a wide range of temperatures. The antiferromagnetic behaviour of 2 should originate from the superexchange interactions between each copper(ii) ion by the mixed chloride and µ4-O ion pathways. Besides, the weak antiferromagnetic character of 2 can be also attributed to the presence of intrachain exchange between dimeric units through double oxide ion. In complex 3, strong antiferromagnetic coupling between Cu(ii) centres in the Cu2O2Cl2 moiety is found. The cytotoxicity of all compounds was tested in vitro against various cancer cell lines: human lung adenocarcinoma (A549), human breast adenocarcinoma (MCF7), human prostate carcinoma; derived from metastatic site: brain (DU-145) and two normal cell lines: human embryonic kidney (HEK293T) and human keratinocyte (HaCat). Furthermore, Pluronic P-123 micelles loaded with selected complexes (1 and 3) were proposed to overcome low solubility and to minimize systemic side effects. More detailed study revealed that complex 3 loaded inside micelles causes DU-145 cells' death with simultaneous decrease of mitochondrial membrane potential and a high level of reactive oxygen species generation. The stability of the compounds 1-4 in DMSO was confirmed by UV-Vis and FT-IR spectra studies.

6.
J Phys Chem A ; 125(2): 657-668, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33423496

ABSTRACT

The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro-o-phenylenediamine, to the methanolic solution of SeCl4, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.

7.
J Inorg Biochem ; 215: 111311, 2021 02.
Article in English | MEDLINE | ID: mdl-33246642

ABSTRACT

Gold(III) complex containing 2-pyridineethanol has been synthesized and characterized structurally by single crystal X-ray diffraction, vibrational spectroscopy, 1H NMR spectroscopy, electrochemical study, and DFT calculations. The Au(III) ion is four coordinated with one N-donor ligand (L) and three Cl anions. The Okuniewski's (τ'4=0.018) has been used to estimate the angular distortion from ideal square planar geometry. The vibrational spectroscopy studies, in the solid state and DMSO solution and cyclic voltammetry, have been performed to determine its stability and redox activity, respectively. A complete assignment of the IR and Raman spectra has been made based on the calculated potential energy distribution (PED). The theoretical calculations have been made for two functionals and several basis sets. The compound has been evaluated for its antiproliferative properties in a human lung adenocarcinoma cell line (A549), mouse colon carcinoma (CT26), human breast adenocarcinoma (MCF-7), human prostate carcinoma derived from the metastatic site in the brain (DU-145), and PANC-1 human pancreas/duct carcinoma cell line and non-tumorigenic cell lines: HaCat (human keratinocyte), and HEK293T (human embryonic kidney). Au(III) complex cytotoxicity is significantly against A549 and MCF-7 cells as in the reference drug: cisplatin. Studies of the interactions of Au(III) complex with DNA, HSA (human serum albumin) have been performed. The results from modeling docking simulations indicate that the title complex exerts anticancer effects in vitro based on different mechanisms of action to compare with cisplatin.


Subject(s)
Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Gold/chemistry , Pyridines/chemistry , Pyridines/pharmacology , A549 Cells , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , DNA/metabolism , Density Functional Theory , HEK293 Cells , Humans , Ligands , MCF-7 Cells , Magnetic Resonance Spectroscopy/methods , Mice , Molecular Docking Simulation , Serum Albumin, Human/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , X-Ray Diffraction/methods
8.
Polymers (Basel) ; 8(7)2016 Jul 12.
Article in English | MEDLINE | ID: mdl-30974532

ABSTRACT

The objective of this study was to evaluate the changes within the physicochemical properties of gelatine (2%; 4%; 8%), carrageenan (1.5%; 2%; 2.5%) and sodium alginate (0.75%; 1%; 1.25%) hydrogels with different sodium chloride concentrations that were triggered by applying direct current (DC) of 400 mA for a duration of five minutes. There were three types of gels prepared for the purpose of the study: C, control; H, gels on the basis of hydrosols that were treated with DC; and G, gels treated with DC. In the course of the study, the authors carried out the following analyses: Texture Profile Analysis (TPA), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Swelling Ratio (SR). Furthermore, the color and pH of hydrogels were measured. The FTIR spectra showed that the structures of gelatine, carrageenan and sodium alginate do not significantly change upon applying DC. The results of TPA, SR, color and pH measurement indicate that hydrogels' properties are significantly dependent on the type of polymer, its concentration and the type of the gel. By changing those parameters, the characteristics of such gels can be additionally tuned, which extends their applicability, e.g., in the food industry. Moreover, the analysis revealed that SR of H gel gelatine after 72 h of storage was 1.84-times higher than SR of the control sample, which indicated that this gel may be considered as a possible component for wound dressing materials.

9.
Polymers (Basel) ; 8(8)2016 Jul 30.
Article in English | MEDLINE | ID: mdl-30974552

ABSTRACT

The aim of the study was to investigate the effect of using direct electric current (DC) of 400 mA for five minutes on the physiochemical properties of gelatine (2%, 4%, and 8%), carrageenan (1.5%, 2%, and 2.5%) and sodium alginate (0.75%, 1%, and 1.25%) hydrosols with different sodium chloride concentration. The pH, oxidation-reduction potential (ORP), electrical conductivity (EC), available chlorine concentration (ACC) and rheological parameters were measured. Moreover, Fourier transform infrared spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis were carried out. The results have shown that pH, ORP, EC and ACC values are changed upon applying DC and the magnitude of change depends on the concentration of the polymer and the addition of sodium chloride. After seven days of storage, the ACC of the samples exposed to DC decreased by 88%⁻96%. The FT-IR spectra demonstrated that the structure of gelatine, carrageenan and sodium alginate are not significantly affected by DC. Furthermore, the use of DC did not affect the flow and gelation temperature of the hydrosols. These results suggest that the use of DC did not cause undesirable changes in hydrosols layer and these innovative materials can be used, e.g., for food preservation.

10.
J Phys Chem A ; 118(34): 6922-34, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25075557

ABSTRACT

Picoplatin, cis-[PtCl2(NH3)(2-picoline)], is a new promising anticancer agent undergoing clinical trials, which reveals high efficacy against many tumors and greatly reduced toxicity, in comparison to cisplatin. In this work, we present for the first time the Fourier-transform Raman and infrared spectra of picoplatin, in the region of 3500-50 cm(-1). The comprehensive theoretical studies on the molecular structure, the nature of Pt-ligand bonding, vibrational frequencies, and intensities were performed by employing different DFT methods, including hybrid (PBE0, mPW1PW, and B3LYP) and long-range-corrected hybrid density functionals (LC-ωPBE, CAM-B3LYP). Various effective core potentials (ECP) and basis sets have been used. In the prediction of the molecular structure of picoplatin, the best results have been obtained by LC-ωPBE, followed by PBE0, mPW1PW, and CAM-B3LYP density functionals, while the least accurate is B3LYP. The use of the LanL2TZ(f) ECP/basis set for Pt, in conjunction with all tested DFT methods, improves the calculated geometry of the title complex. The PBE0, mPW1PW, and CAM-B3LYP methods have shown the best performance in the calculations of the frequencies of Pt-ligand vibrations. A clear-cut assignment of all the bands in the IR and Raman spectra have been made on the basis of the calculated potential energy distribution (PED). The nature of the "vibrational signatures" of picoplatin have been determined. These results are indispensable for further investigation on drug-target interactions using vibrational spectroscopy.


Subject(s)
Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Platinum/chemistry , Models, Molecular , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Vibration
11.
Article in English | MEDLINE | ID: mdl-24583852

ABSTRACT

Ten different DFT methods, including several recently developed functionals have been tested for their performances in prediction of infrared and Raman spectra and molecular structure of cisplatin. The assessed DFT methods cover the range from meta-GGA to hybrid, double hybrid and long-range corrected hybrid models (M06-L, M06, M06-2X, PBE0, mPW1PW, B3LYP, B2PLYP, CAM-B3LYP, ωB97XD and LC-ωPBE). The calculated structural parameters and theoretical spectra have been compared to the corresponding experimental data. It is shown that the LC-ωPBE scheme is superior to other DFT methods in predicting the geometry of cisplatin. Unfortunately, the M06-L, M06-2X and B3LYP functionals are deficient in the evaluation of the strength of two Pt←NH3 coordination bonds in cisplatin (the calculated bond lengths are too long and the Pt-N stretching frequencies are underestimated). Both the PBE0 and mPW1PW functionals, in conjunction with the LanL2TZ(f) basis set for Pt give very similar theoretical results and seem to be the best methods for predicting the IR and Raman spectra of cisplatin. The long-range corrected functionals (LC-ωPBE, ωB97XD and CAM-B3LYP) have shown good performances in predicting the frequencies of Pt-ligand vibrations and are promising new tools for theoretical study of novel platinum(II) compounds.


Subject(s)
Cisplatin/chemistry , Models, Molecular , Platinum/chemistry , Quantum Theory , Spectrum Analysis, Raman , Vibration , Molecular Conformation , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...