Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 190: 106624, 2024 May.
Article in English | MEDLINE | ID: mdl-38492828

ABSTRACT

Pseudomonas aeruginosa is widely associated with biofilm-mediated antibiotic resistant chronic and acute infections which constitute a persistent healthcare challenges. Addressing this threat requires exploration of novel therapeutic strategies involving the combination of natural compounds and conventional antibiotics. Hence, our study has focused on two compounds; cuminaldehyde and ciprofloxacin, which were strategically combined to target the biofilm challenge of P. aeruginosa. The minimum inhibitory concentration (MIC) of cuminaldehyde and ciprofloxacin was found to be 400 µg/mL and 0.4 µg/mL, respectively. Moreover, the fractional inhibitory concentration index (FICI = 0.62) indicated an additive interaction prevailed between cuminaldehyde and ciprofloxacin. Subsequently, sub-MIC doses of cuminaldehyde (25 µg/mL) and ciprofloxacin (0.05 µg/mL) were selected for an array of antibiofilm assays which confirmed their biofilm inhibitory potential without exhibiting any antimicrobial activity. Furthermore, selected doses of the mentioned compounds could manage biofilm on catheter surface by inhibiting and disintegrating existing biofilm. Additionally, the test combination of the mentioned compounds reduced virulence factors secretion, accumulated reactive oxygen species and increased cell-membrane permeability. Thus, the combination of cuminaldehyde and ciprofloxacin demonstrates potential in combating biofilm-associated Pseudomonal threats.


Subject(s)
Anti-Bacterial Agents , Benzaldehydes , Biofilms , Ciprofloxacin , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Reactive Oxygen Species , Biofilms/drug effects , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Benzaldehydes/pharmacology , Reactive Oxygen Species/metabolism , Virulence Factors , Cymenes/pharmacology , Drug Synergism , Cell Membrane Permeability/drug effects , Humans
2.
Article in English | MEDLINE | ID: mdl-38526664

ABSTRACT

Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 µg/mL) in combination with tobramycin (0.05 µg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.

3.
Microb Pathog ; 189: 106601, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423404

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant human pathogen causes several nosocomial as well as community-acquired infections involving biofilm machinery. Hence, it has gained a wide interest within the scientific community to impede biofilm-induced MRSA-associated health complications. The current study focuses on the utilization of a natural bioactive compound called piperine to control the biofilm development of MRSA. Quantitative assessments like crystal violet, total protein recovery, and fluorescein-di-acetate (FDA) hydrolysis assays, demonstrated that piperine (8 and 16 µg/mL) could effectively compromise the biofilm formation of MRSA. Light and scanning electron microscopic image analysis confirmed the same. Further investigation revealed that piperine could reduce extracellular polysaccharide production by down-regulating the expression of icaA gene. Besides, piperine could reduce the cell-surface hydrophobicity of MRSA, a crucial factor of biofilm formation. Moreover, the introduction of piperine could interfere with microbial motility indicating the interaction of piperine with the quorum-sensing components. A molecular dynamics study showed a stable binding between piperine and AgrA protein (regulator of quorum sensing) suggesting the possible meddling of piperine in quorum-sensing of MRSA. Additionally, the exposure to piperine led to the accumulation of intracellular reactive oxygen species (ROS) and potentially heightened cell membrane permeability in inhibiting microbial biofilm formation. Besides, piperine could reduce the secretion of diverse virulence factors from MRSA. Further exploration revealed that piperine interacted with extracellular DNA (e-DNA), causing disintegration by weakening the biofilm architecture. Conclusively, this study suggests that piperine could be a potential antibiofilm molecule against MRSA-associated biofilm infections.


Subject(s)
Alkaloids , Benzodioxoles , Methicillin-Resistant Staphylococcus aureus , Piperidines , Polyunsaturated Alkamides , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Biofilms , Phytochemicals/pharmacology , DNA/metabolism , Microbial Sensitivity Tests
4.
Appl Biochem Biotechnol ; 196(3): 1272-1291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37389724

ABSTRACT

Staphylococcus aureus causes a range of chronic infections in humans by exploiting its biofilm machinery and drug-tolerance property. Although several strategies have been proposed to eradicate biofilm-linked issues, here, we have explored whether piperine, a bioactive plant alkaloid, can disintegrate an already existing Staphylococcal biofilm. Towards this direction, the cells of S. aureus were allowed to develop biofilm first followed by treatment with the test concentrations (8 and 16 µg/mL) of piperine. In this connection, several assays such as total protein recovery assay, crystal violet assay, extracellular polymeric substances (EPS) measurement assay, fluorescein diacetate hydrolysis assay, and fluorescence microscopic image analysis confirmed the biofilm-disintegrating property of piperine against S. aureus. Piperine reduced the cellular auto-aggregation by decreasing the cell surface hydrophobicity. On further investigation, we observed that piperine could down regulate the dltA gene expression that might reduce the cell surface hydrophobicity of S. aureus. It was also observed that the piperine-induced accumulation of reactive oxygen species (ROS) could enhance biofilm disintegration by decreasing the cell surface hydrophobicity of the test organism. Together, all the observations suggested that piperine could be used as a potential molecule for the effective management of the pre-existing biofilm of S. aureus.


Subject(s)
Alkaloids , Piperidines , Polyunsaturated Alkamides , Staphylococcal Infections , Humans , Staphylococcus aureus , Biofilms , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
5.
Article in English | MEDLINE | ID: mdl-38133854

ABSTRACT

The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.

SELECTION OF CITATIONS
SEARCH DETAIL
...