Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 2633, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528016

ABSTRACT

The death toll and monetary damages from landslides continue to rise despite advancements in predictive modeling. These models' performances are limited as landslide databases used in developing them often miss crucial information, e.g., underlying movement types. This study introduces a method of discerning landslide movements, such as slides, flows, and falls, by analyzing landslides' 3D shapes. By examining landslide topological properties, we discover distinct patterns in their morphology, indicating different movements including complex ones with multiple coupled movements. We achieve 80-94% accuracy by applying topological properties in identifying landslide movements across diverse geographical and climatic regions, including Italy, the US Pacific Northwest, Denmark, Turkey, and Wenchuan in China. Furthermore, we demonstrate a real-world application on undocumented datasets from Wenchuan. Our work introduces a paradigm for studying landslide shapes to understand their underlying movements through the lens of landslide topology, which could aid landslide predictive models and risk evaluations.

2.
Chaos ; 34(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38260937

ABSTRACT

With the recent increase in deforestation, forest fires, and regional temperatures, the concerns around the rapid and complete collapse of the Amazon rainforest ecosystem have heightened. The thresholds of deforestation and the temperature increase required for such a catastrophic event are still uncertain. However, our analysis presented here shows that signatures of changing Amazon are already apparent in historical climate data sets. Here, we extend the methods of climate network analysis and apply them to study the temporal evolution of the connectivity between the Amazon rainforest and the global climate system. We observe that the Amazon rainforest is losing short-range connectivity and gaining more long-range connections, indicating shifts in regional-scale processes. Using embeddings inspired by manifold learning, we show that the Amazon connectivity patterns have undergone a fundamental shift in the 21st century. By investigating edge-based network metrics on similar regions to the Amazon, we see the changing properties of the Amazon are noticeable in comparison. Furthermore, we simulate diffusion and random walks on these networks and observe a faster spread of perturbations from the Amazon in recent decades. Our methodology innovations can act as a template for examining the spatiotemporal patterns of regional climate change and its impact on global climate using the toolbox of climate network analysis.

3.
Phys Rev E ; 107(3-1): 034133, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37072983

ABSTRACT

Recent wildfire prevalence and destruction have led to new initiatives in the search for better land management techniques and prescriptions for controlled burns. With limited data on low-intensity prescribed burns, finding models that can represent fire behavior is of great importance to learning how to control fires with more accuracy while also maintaining the purpose for the burn, be it reducing fuels or managing the ecosystem. Here we use a data set of infrared temperatures collected in the New Jersey Pine Barrens from 2017 through 2020 to develop a model for very fine-scale fire behavior (≈0.05 m^{2}). The model uses distributions from the data set to define five stages in fire behavior in a cellular automata framework. For each cell, the transition between each stage is probabilistically driven based on the radiant temperature values of the cell and its immediate neighbors in a coupled map lattice. With five distinct initial conditions, we performed 100 simulations and used the parameters derived from the data set to develop metrics for model verification. To validate the model, we also expanded it to include variables not in the data set that are important for fire behavior, e.g., fuel moisture levels and spotting ignitions. The model matches several metrics compared to the observational data set and exhibits behavioral characteristics expected from low-intensity wildfire behavior including a long and varied burn time for each cell after initial ignition, and lingering embers in the burn zone.

4.
Chaos ; 30(9): 090401, 2020 09.
Article in English | MEDLINE | ID: mdl-33003932
5.
Chaos ; 30(8): 083108, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32872795

ABSTRACT

We present a hybrid framework appropriate for identifying distinct dynamical regimes and transitions in a paleoclimate time series. Our framework combines three powerful techniques used independently of each other in time series analysis: a recurrence plot, manifold learning through Laplacian eigenmaps, and Fisher information metric. The resulting hybrid approach achieves a more automated classification and visualization of dynamical regimes and transitions, including in the presence of missing values, observational noise, and short time series. We illustrate the capabilities of the method through several pragmatic numerical examples. Furthermore, to demonstrate the practical usefulness of the method, we apply it to a recently published paleoclimate dataset: a speleothem oxygen isotope record from North India covering the past 5700 years. This record encodes the patterns of monsoon rainfall over the region and covers the critically important period during which the Indus Valley Civilization matured and declined. We identify a transition in monsoon dynamics, indicating a possible connection between climate change and the decline of the Indus Valley Civilization.

6.
Phys Rev E ; 99(6-1): 062301, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330685

ABSTRACT

Even though transitivity is a central structural feature of social networks, its influence on epidemic spread on coevolving networks has remained relatively unexplored. Here we introduce and study an adaptive susceptible-infected-susceptible (SIS) epidemic model wherein the infection and network coevolve with nontrivial probability to close triangles during edge rewiring, leading to substantial reinforcement of network transitivity. This model provides an opportunity to study the role of transitivity in altering the SIS dynamics on a coevolving network. Using numerical simulations and approximate master equations (AMEs), we identify and examine a rich set of dynamical features in the model. In many cases, AMEs including transitivity reinforcement provide accurate predictions of stationary-state disease prevalence and network degree distributions. Furthermore, for some parameter settings, the AMEs accurately trace the temporal evolution of the system. We show that higher transitivity reinforcement in the model leads to lower levels of infective individuals in the population, when closing a triangle is the dominant rewiring mechanism. These methods and results may be useful in developing ideas and modeling strategies for controlling SIS-type epidemics.

7.
Netw Sci (Camb Univ Press) ; 7(3): 438-444, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31984135

ABSTRACT

Network representations of systems from various scientific and societal domains are neither completely random nor fully regular, but instead appear to contain recurring structural features. These features tend to be shared by networks belonging to the same broad class, such as the class of social networks or the class of biological networks. Within each such class, networks describing similar systems tend to have similar features. This occurs presumably because networks representing similar systems would be expected to be generated by a shared set of domain specific mechanisms, and it should therefore be possible to classify networks based on their features at various structural levels. Here we describe and demonstrate a new hybrid approach that combines manual selection of network features of potential interest with existing automated classification methods. In particular, selecting well-known network features that have been studied extensively in social network analysis and network science literature, and then classifying networks on the basis of these features using methods such as random forest, which is known to handle the type of feature collinearity that arises in this setting, we find that our approach is able to achieve both higher accuracy and greater interpretability in shorter computation time than other methods.

8.
J Complex Netw ; 6(1): 1-23, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29732158

ABSTRACT

We study a model for switching strategies in the Prisoner's Dilemma game on adaptive networks of player pairings that coevolve as players attempt to maximize their return. We use a node-based strategy model wherein each player follows one strategy at a time (cooperate or defect) across all of its neighbors, changing that strategy and possibly changing partners in response to local changes in the network of player pairing and in the strategies used by connected partners. We compare and contrast numerical simulations with existing pair approximation differential equations for describing this system, as well as more accurate equations developed here using the framework of approximate master equations. We explore the parameter space of the model, demonstrating the relatively high accuracy of the approximate master equations for describing the system observations made from simulations. We study two variations of this partner-switching model to investigate the system evolution, predict stationary states, and compare the total utilities and other qualitative differences between these two model variants.

9.
Chaos ; 27(10): 101102, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092412

ABSTRACT

We systematically investigate the phenomena of coherence resonance in time-delay coupled networks of FitzHugh-Nagumo elements in the excitable regime. Using numerical simulations, we examine the interplay of noise, time-delayed coupling, and network topology in the generation of coherence resonance. In the deterministic case, we show that the delay-induced dynamics is independent of the number of nearest neighbors and the system size. In the presence of noise, we demonstrate the possibility of controlling coherence resonance by varying the time-delay and the number of nearest neighbors. For a locally coupled ring, we show that the time-delay weakens coherence resonance. For nonlocal coupling with appropriate time-delays, both enhancement and weakening of coherence resonance are possible.

10.
Geophys Res Lett ; 43(4): 1710-1717, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-27909349

ABSTRACT

In this study, we provide a comprehensive analysis of trends in the extremes during the Indian summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the recent decades and may be associated with changing climatic conditions. Our analysis primarily relies on quantile regression that avoids making any subjective choices on spatial, temporal, or intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into climatic compartments that show different and partly opposing trends. These include strong trends towards intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily rain intensity leading to higher flood vulnerability. Our analysis helps explain previously contradicting results of trends in average ISM rainfall.

11.
Chaos ; 26(12): 123112, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28039984

ABSTRACT

One of the fundamental structural properties of many networks is triangle closure. Whereas the influence of this transitivity on a variety of contagion dynamics has been previously explored, existing models of coevolving or adaptive network systems typically use rewiring rules that randomize away this important property, raising questions about their applicability. In contrast, we study here a modified coevolving voter model dynamics that explicitly reinforces and maintains such clustering. Carrying out numerical simulations for a variety of parameter settings, we establish that the transitions and dynamical states observed in coevolving voter model networks without clustering are altered by reinforcing transitivity in the model. We then use a semi-analytical framework in terms of approximate master equations to predict the dynamical behaviors of the model for a variety of parameter settings.

12.
Article in English | MEDLINE | ID: mdl-25019852

ABSTRACT

A method to identify distinct dynamical regimes and transitions between those regimes in a short univariate time series was recently introduced [N. Malik et al., Europhys. Lett. 97, 40009 (2012)], employing the computation of fluctuations in a measure of nonlinear similarity based on local recurrence properties. In this work, we describe the details of the analytical relationships between this newly introduced measure and the well-known concepts of attractor dimensions and Lyapunov exponents. We show that the new measure has linear dependence on the effective dimension of the attractor and it measures the variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the method, we identify various types of dynamical transitions in different nonlinear models. We present testbed examples for the new method's robustness against noise and missing values in the time series. We also use this method to analyze time series of social dynamics, specifically an analysis of the US crime record time series from 1975 to 1993. Using this method, we find that dynamical complexity in robberies was influenced by the unemployment rate until the late 1980s. We have also observed a dynamical transition in homicide and robbery rates in the late 1980s and early 1990s, leading to increase in the dynamical complexity of these rates.


Subject(s)
Nonlinear Dynamics , Time , Crime/statistics & numerical data , Linear Models , Unemployment/statistics & numerical data , United States
13.
Chaos ; 23(4): 043123, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24387562

ABSTRACT

Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the coevolving network voter model of opinion formation studied by Holme and Newman [Phys. Rev. E 74, 056108 (2006)]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for heterogeneity and asymmetric influences in relationships between individuals. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus, allowing for the existence of diverse opinions, and the other having a single dominant connected component with each node within that dominant component having the same opinion. Furthermore, more importantly, we found that the initial clustering in the network can also induce similar transitions. Our investigation also indicates that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes.


Subject(s)
Models, Biological , Neural Networks, Computer , Social Behavior , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL