Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 101(3): 690-695, 2023 03.
Article in English | MEDLINE | ID: mdl-36322010

ABSTRACT

Malaria continues to be a significant public health problem threatened by the emergence and spread of resistance to artemisinin-based combination therapies and marked half a million deaths in 2016. A new imidazopyridine chemotype has been envisaged through scaffold-hopping approach combined with docking studies for putative-binding interactions with Plasmodium falciparum phosphatidylinositol-4-kinase (PfPI4K) target. The docking results steered to the synthesis of compound 1 [5-(3-(methylsulfonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)-3H-imidazo[4,5-b]pyridine] followed by the in vitro screening for antiplasmodial activity and ADME-PK studies. Combined with potent antimalarial activity of compound 1 (Pf3D7 IC50  = 29 nM) with meager in vitro intrinsic clearance, moderate plasma-protein binding, and acceptable permeability, compound 1 displayed sustained exposure and high oral bioavailability in mice and can thus have the potential as next generation PI4K inhibitor for in vivo studies.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria , Mice , Animals , Antimalarials/pharmacology , Antimalarials/chemistry , Malaria/drug therapy , Plasmodium falciparum , Pyridines/chemistry
2.
Anal Chim Acta ; 576(1): 61-6, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17723615

ABSTRACT

A method for the determination of trace amount of dichlorophenol isomers in urine samples using the combination of liquid-phase hollow fiber microextraction (LPME-HF) with gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-MS) has been demonstrated. The method has been optimized with respect to several parameters including the effects of negative chemical ionization (NCI) reagent pressure, the hollow fiber length, extraction time, stirring rate, sample pH and salt concentration for the determination of dichlorophenol isomers in water. The correlation coefficient (r2) of the calibration curves for 2,5-dichlorophenol, 2,3-dichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol and 3,4-dichlorophenol were 0.988, 0.981, 0.985, 0.971 and 0.994, respectively. The average recovery rates for 2,5-dichlorophenol, 2,3-dichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol and 3,4-dichlorophenol were 0.97, 0.93, 0.96, 0.95 and 0.95, respectively (n=3 for each dichlorophenol) indicate that the methodology is feasible for the determination of trace amounts of dichlorophenol isomers in water and urine samples. Limits of detection (LOD) have been found to be in the range of 5-20 ng/ml. In addition, differentiation of the five dichlorophenol isomers is an easy task using the current approach of combining LPME-HF with NCI-GC-MS technique since they exhibit different NCI spectra.

3.
Rapid Commun Mass Spectrom ; 18(18): 2059-64, 2004.
Article in English | MEDLINE | ID: mdl-15378718

ABSTRACT

The application of single-drop microextraction (SDME) followed by gas chromatography/chemical ionization mass spectrometry (GC/CI-MS) was investigated for the determination of anisaldehyde isomers in human urine and blood serum. The effects of extraction solvent, sample agitation rate, salt addition, sampling time and temperature on the extraction efficiency were examined and optimized. Analytical parameters such as linearity, reproducibility, detection limit and relative recovery were evaluated under the optimized experimental conditions. Good reproducibilities of replicate extractions (n = 5) were obtained, with relative standard deviation (RSD) values below 6%. The limits of detection (LOD) using an extraction time of 5 min were found to be in the range 2-5 ng/mL under the selected ion monitoring (SIM) mode of GC/MS. Recoveries of 82-98% were achieved after 5 min extraction.


Subject(s)
Benzaldehydes/blood , Benzaldehydes/urine , Blood Chemical Analysis/methods , Gas Chromatography-Mass Spectrometry/methods , Microfluidics/methods , Solvents/chemistry , Urinalysis/methods , Benzaldehydes/chemistry , Benzaldehydes/classification , Chemical Precipitation , Humans , Isomerism , Microchemistry/methods , Reproducibility of Results , Sensitivity and Specificity , Temperature , Water/analysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...