Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 203(6): 3219-3228, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33830286

ABSTRACT

The present study aimed to evaluate the potential of cell surface and extracellular proteins in regulation of intestinal epithelial barrier (IEB) function. Eight potentially probiotic L. reuteri strains were evaluated for presence of mapA gene and its expression on co-culturing with the Caco-2 cells. The ability of untreated (Viable), heat-inactivated, 5 M LiCL treated L. reuteri strains as well as their cell-free supernatant (CFS) to modulate expression of IEB function genes (hBD-2, hBD-3, claudin-1 and occludin) was also evaluated. Caco-2 cells were treated with cell surface and extracellular protein extracts and investigated for change in expression of targeted IEB function genes. The results showed that mapA gene is present in all the tested L. reuteri strains and expression of mapA and its receptors (anxA13 and palm) increase significantly on co-culturing of L. reuteri and Caco-2 cells. Also, up-regulated expression of IEB function genes was observed on co-culturing of L. reuteri (viable, heat-inactivated and CFS) and their protein extracts with Caco-2 cells in contrast to down-regulation observed with the pathogenic strain of Salmonella typhi. Therefore, this study concludes that the cell surface and extracellular protein from L. reuteri act as an effective mediator molecules to regulate IEB function.


Subject(s)
Bacterial Proteins , Host-Pathogen Interactions , Intestinal Mucosa , Limosilactobacillus reuteri , Membrane Proteins , Probiotics , Bacterial Proteins/metabolism , Caco-2 Cells , Cell Membrane/metabolism , Host-Pathogen Interactions/physiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Limosilactobacillus reuteri/metabolism , Membrane Proteins/metabolism , Probiotics/metabolism
2.
Probiotics Antimicrob Proteins ; 12(2): 517-534, 2020 06.
Article in English | MEDLINE | ID: mdl-31218544

ABSTRACT

The present study investigated the impact of probiotic Lactobacillus reuteri LR6 on the gut and systemic immunity using protein energy malnourished (PEM) murine model. Thirty male Swiss albino mice were divided into five groups: control (C), malnourished (M), probiotic fermented milk (PFM), skim milk (SM), and bacterial suspension (BS) with six mice per group. Group C was fed with conventional diet throughout the study while the other groups were fed with protein calorie restricted diet until the development of malnutrition. After development of malnutrition, group M was continued with the restricted diet while other groups were fed with re-nourished diet supplemented with PFM, SM, and BS for 1 week, respectively. Thereafter, mice were sacrificed and different histological, microbiological, and immunological parameters were studied. Probiotics feeding in PEM model as fermented product or bacterial suspension improved the intestinal health in terms of intact morphology of colonic crypts, normal goblet cells, and intact lamina propria with no inflammation in large intestine, absence of fibrosis, and no inflammation in spleen. The number of secretory IgA+ cells was significantly higher in group PFM and BS. Also, increase in the phagocytic percentage of the macrophages and bone marrow derived dendritic cells (DCs) were observed in the PFM and BS group in comparison to the group M. In comparison to the group M and SM, lactobacilli, bifidobacteria, and Firmicutes counts were significantly higher in the group PFM and BS. This study concludes that probiotic supplementation to re-nutrition diet could emerge as wonder therapeutics against PEM.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa/immunology , Limosilactobacillus reuteri , Probiotics/administration & dosage , Protein-Energy Malnutrition/therapy , Animals , Male , Mice
3.
Front Microbiol ; 8: 486, 2017.
Article in English | MEDLINE | ID: mdl-28377765

ABSTRACT

Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were able to adhere to Caco-2 cells. L. reuteri strains tested were able to inhibit and displace (P < 0.05) the adhesion of Escherichia coli ATCC25922, Salmonella typhi NCDC113, Listeria monocytogenes ATCC53135, and Enterococcus faecalis NCDC115. The probiotic strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5 M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cells and are highly antagonistic to pathogens tested in which surface associated proteins play an important role.

SELECTION OF CITATIONS
SEARCH DETAIL
...