Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1249, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218940

ABSTRACT

Polyoxometalates (POM) are anionic oxoclusters of early transition metals that are of great interest for a variety of applications, including the development of sensors and catalysts. A crucial step in the use of POM in functional materials is the production of composites that can be further processed into complex materials, e.g. by printing on different substrates. In this work, we present an immobilization approach for POMs that involves two key processes: first, the stable encapsulation of POMs in the pores of mesoporous silica nanoparticles (MSPs) and, second, the formation of microstructured arrays with these POM-loaded nanoparticles. Specifically, we have developed a strategy that leads to water-stable, POM-loaded mesoporous silica that can be covalently linked to alkene-bearing surfaces by amine-Michael addition and patterned into microarrays by scanning probe lithography (SPL). The immobilization strategy presented facilitates the printing of hybrid POM-loaded nanomaterials onto different surfaces and provides a versatile method for the fabrication of POM-based composites. Importantly, POM-loaded MSPs are useful in applications such as microfluidic systems and sensors that require frequent washing. Overall, this method is a promising way to produce surface-printed POM arrays that can be used for a wide range of applications.

2.
Beilstein J Nanotechnol ; 13: 455-461, 2022.
Article in English | MEDLINE | ID: mdl-35655941

ABSTRACT

Glassy carbon, in general, is made by the pyrolysis of polymeric materials and has been the subject of research for at least fifty years. However, as understanding its microstructure is far from straightforward, it continues to be an area of active research. Glassy carbon adopts different allotropes depending on the hybridizations of the C-C bond, that is, sp, sp2, or sp3 . Furthermore, a variety of short-range ordering effects can interact with each other and this, along with the effects of microporosity, grain boundaries, and defects, render this a fascinating material. Following the nanoarchitectonics concept of bottom-up creation of functional materials, we use methane rather than a polymer to form glassy carbon. Here we show that tubular glassy carbon microneedles with fullerene-like tips form when methane undergoes pyrolysis on a curved alumina surface. X-ray diffraction of these glassy carbon tubules shows long-range order with a d-spacing of 4.89 Å, which is indicative of glassy carbon. Raman spectroscopy shows the material to be graphitic in nature, and SEM shows the fullerene-like structure of the material. This work provides new insights into the structure of glassy carbons relevant to the application of glassy carbons as a biomaterial, for example, as a new form of carbon-based microneedles. Since metallic needles can introduce toxic/allergenic species into susceptible subjects, this alternative carbon-based microneedle form has great potential as a replacement biomedical material for metallic needles in the field of neural engineering and as acupuncture needles.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685169

ABSTRACT

Nanomaterials featuring branched carbon nanotubes (b-CNTs), nanofibers (b-CNFs), or other types of carbon nanostructures (CNSs) are of great interest due to their outstanding mechanical and electronic properties. They are promising components of nanodevices for a wide variety of advanced applications spanning from batteries and fuel cells to conductive-tissue regeneration in medicine. In this concise review, we describe the methods to produce branched CNSs, with particular emphasis on the most widely used b-CNTs, the experimental and theoretical studies on their properties, and the wide range of demonstrated and proposed applications, highlighting the branching structural features that ultimately allow for enhanced performance relative to traditional, unbranched CNSs.

4.
Soft Matter ; 16(48): 10969-10976, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33146639

ABSTRACT

Conventional conductive hydrogels usually lack self-healing properties, but might be favorable for smart electronic applications. Therefore, we present the fabrication of conductive self-healing hydrogels that merge the merits of electrical conductivity and self-healing properties. The conductive self-healing hydrogel composite was prepared by using single-walled carbon nanotubes (SWCNTs), poly(vinyl alcohol) (PVA), and a poly(N,N-dimethyl acrylamide) copolymer derivative modified with pyrene and borate functional moieties. While the tethered pyrene groups of the copolymer facilitated an even dispersion of the conductive components, i.e., SWCNTs, in aqueous solution viaπ-π stacking, the hydrogel system was formed via covalent dynamic cross-linking through tetrahedral borate ion interaction with the -OH group of PVA. The hydrogel composites exhibited bulk conductivity (1.27 S m-1 with 8 mg mL-1 SWCNTs) with a fast and autonomous self-healing ability that restored 95% of the original conductivity within 10 s under ambient conditions. Accordingly, due to their outstanding properties, we postulate that these composites may have potential in biomedical applications, such as tissue engineering, wound healing or electronic skins.

5.
Dalton Trans ; 48(41): 15371-15375, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31107476

ABSTRACT

The heterometallic Zn2Dy2 entity bearing partially saturated metal centres covalently decorates a highly ordered amyloid fibril core and the functionalised assembly exhibits catalytic Lewis acid behaviour.


Subject(s)
Amyloid/chemistry , Dysprosium/chemistry , Oligopeptides/chemistry , Protein Aggregates , Zinc/chemistry , Amino Acid Sequence , Catalysis , Models, Molecular , Molecular Conformation
6.
Small ; 15(7): e1803944, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30624016

ABSTRACT

The locally defined growth of carbon nanofibers with lambda shape in an open flame process is demonstrated. Via the growth time, the geometry of the structures can be tailored to a Λ- or λ-type shape. Microchannel cantilever spotting and dip-pen nanolithography are utilized for the deposition of catalytic salt NiCl2 · 6H2 O for locally controlled growth of lambda-shaped carbon nanofibers. Rigorous downscaling reveals a critical catalytic salt volume of 0.033 µm³, resulting in exactly one lambda-shaped carbon nanofiber at a highly predefined position. An empirical model explains the observed growth process.

7.
RSC Adv ; 9(57): 33187-33192, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35529106

ABSTRACT

Low-voltage electrochemical actuation of radical polymer gels has been demonstrated in an organic electrolyte. Polymer gels were prepared by post-modification of active-ester precursor gels with an amine-functionalised radical. A combination of few-layer graphene and multiwall carbon nanotubes gave high conductivity and improved actuation in the gels, with 32% linear actuation. The actuator system showed good stability over at least 10 cycles, showing its promise. The cycle time was several hours due to mass-transport limited transport of ions and solvent into the device.

8.
ACS Omega ; 4(26): 21873-21882, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31891065

ABSTRACT

Two monolanthanide-containing polyanions based on monolacunary Keggin germanotungstates [Ln(H2O) n GeW11O39]5- (Ln = Dy, Er, n = 4,3) have been synthesized in simple one-pot synthetic procedure and compositionally characterized in solid state by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Electronic absorption and emission spectra of the title compounds in solution were also studied. The [DyIII(H2O)4GeW11O39]5- Keggin POM exhibits a slow relaxation of magnetization. The cyclic voltammetry measurements and mass spectrometry were carried out to check the stability of the compounds in solution. Both polyanions prove efficient in the electrocatalytic reduction of nitrite. To our knowledge, this observation establishes the first example of electrocatalysis of nitrite reduction by all inorganic monolanthanide-containing germanotungstates family.

9.
Beilstein J Nanotechnol ; 9: 801-808, 2018.
Article in English | MEDLINE | ID: mdl-29600141

ABSTRACT

Pure graphene in the form of few-layer graphene (FLG) - 1 to 6 layers - is biocompatible and non-cytotoxic. This makes FLG an ideal material to incorporate into dental polymers to increase their strength and durability. It is well known that graphene has high mechanical strength and has been shown to enhance the mechanical, physical and chemical properties of biomaterials. However, for commercial applicability, methods to produce larger than lab-scale quantities of graphene are required. Here, we present a simple method to make large quantities of FLG starting with commercially available multi-layer graphene (MLG). This FLG material was then used to fabricate graphene dental-polymer composites. The resultant graphene-modified composites show that low concentrations of graphene (ca. 0.2 wt %) lead to enhanced performance improvement in physio-mechanical properties - the mean compressive strength increased by 27% and the mean compressive modulus increased by 22%. Herein we report a new, cheap and simple method to make large quantities of few-layer graphene which was then incorporated into a common dental polymer to fabricate graphene-composites which shows very promising mechanical properties.

11.
Beilstein J Nanotechnol ; 7: 1260-1266, 2016.
Article in English | MEDLINE | ID: mdl-27826499

ABSTRACT

Carbon nanotubes (CNTs) have atomically smooth surfaces and tend not to form covalent bonds with composite matrix materials. Thus, it is the magnitude of the CNT/fiber interfacial strength that limits the amount of nanomechanical interlocking when using conventional CNTs to improve the structural behavior of composite materials through reinforcement. This arises from two well-known, long standing problems in this research field: (a) inhomogeneous dispersion of the filler, which can lead to aggregation and (b) insufficient reinforcement arising from bonding interactions between the filler and the matrix. These dispersion and reinforcement issues could be addressed by using branched multiwalled carbon nanotubes (b-MWCNTs) as it is known that branched fibers can greatly enhance interfacial bonding and dispersability. Therefore, the use of b-MWCNTs would lead to improved mechanical performance and, in the case of conductive composites, improved electrical performance if the CNT filler was better dispersed and connected. This will provide major benefits to the existing commercial application of CNT-reinforced composites in electrostatic discharge materials (ESD): There would be also potential usage for energy conversion, e.g., in supercapacitors, solar cells and Li-ion batteries. However, the limited availability of b-MWCNTs has, to date, restricted their use in such technological applications. Herein, we report an inexpensive and simple method to fabricate large amounts of branched-MWCNTs, which opens the door to a multitude of possible applications.

12.
Nanotechnology ; 23(41): 415302, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23018599

ABSTRACT

Molecular oxygen etching of HOPG surfaces prepatterned by Ga(+) focused-ion-beam irradiation (FIB) has been used to generate large-area arrays of nanometer-sized graphite blocks. AFM and SEM imaging show that structures with lateral sizes down to ~100 nm and heights of between 30 and 55 nm can be routinely fabricated. The trenches separating the graphite blocks form in the early oxidation stages via preferential gasification (into CO and CO(2)) of the gridlike amorphized carbon regions written by FIB. In the later oxidative etching stages, gasification of the graphite nanoprism faces laterally terminating the graphite blocks becomes the major reaction channel. Correspondingly, graphite blocks are (further) reduced in lateral extent while the trenches in between are widened. Raman and photoionization spectroscopies indicate that the quality of the topmost nG sheet(s) covering the blocks also decreases with increasing etching time-as the size and lateral density of defect-mediated etch pits increases. nG block arrays are useful substrates with which to probe the size-dependent properties of nanographene, as they comprise large numbers of uniform sheets (ca. 4 × 10(10) cm(-2) for an array of 0.5 × 0.5 µm(2)) thus allowing for the application of area-integrating spectroscopic methods. We demonstrate this by examining the Raman features of nG block arrays which include a graphene-rim-region fingerprint mode. Individual nG sheets can be exfoliated from nG stacks by means of electron-irradiation-induced charging. We have explored a number of printing/manipulation strategies aimed at controllable electromechanical transfer of nG sheet arrays to silicon wafers.

13.
Chem Commun (Camb) ; 47(26): 7428-30, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21629914

ABSTRACT

Photocleavable polymers based on 9,9-dialkylfluorene backbone and o-nitrobenzylether were designed and synthesized to obtain stable (n,m) enriched suspensions of semiconducting SWNTs in toluene. Photoirradiation of the suspensions triggered the precipitation of the SWNTs and TEM images indicate close packing of SWNTs pointing at partial removal of the coating polymer.

14.
Nanoscale ; 2(10): 2139-43, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20717599

ABSTRACT

A simple method of fabricating pristine few-layer and single-layer graphene which could be used for production on a gram scale is described.

15.
ACS Nano ; 4(2): 649-56, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20085346

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are attractive building blocks for molecular electronics and novel materials. Generating functional architectures with SWCNTs requires methodologies for dispersing, purifying, and binding these highly insoluble quasi one-dimensional molecules. We have previously shown that unstructured DNA strands bind to carbon nanotubes so tightly that it is difficult to address them with complementary strands. Here we show that hairpin oligonucleotides give SWCNT suspensions more concentrated than those obtainable with previously optimized DNA sequences. Further, hairpin-forming oligonucleotides and (6,5)-SWCNTs form complexes that are addressable with complementary, triplex-forming oligonucleotides. As proof of principle, we show that DNA-SWCNT complexes can be bound sequence-specifically with oligonucleotides featuring fluorophores or quantum dots. The new method brings SWCNTs of exquisite purity into the realm of DNA-based nanostructuring.


Subject(s)
DNA/chemistry , DNA/genetics , Inverted Repeat Sequences , Nanotubes, Carbon/chemistry , Base Sequence , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/genetics , Solubility , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...