Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Bioinformatics ; 40(8)2024 08 02.
Article in English | MEDLINE | ID: mdl-39078116

ABSTRACT

MOTIVATION: Chemical reaction networks (CRNs) play a pivotal role in diverse fields such as systems biology, biochemistry, chemical engineering, and epidemiology. High-level definitions of CRNs enables to use various simulation approaches, including deterministic and stochastic methods, from the same model. However, existing Python tools for simulation of CRN typically wrap external C/C++ libraries for model definition, translation into equations and/or numerically solving them, limiting their extensibility and integration with the broader Python ecosystem. RESULTS: In response, we developed Poincaré and SimBio, two novel Python packages for simulation of dynamical systems and CRNs. Poincaré serves as a foundation for dynamical systems modeling, while SimBio extends this functionality to CRNs, including support for the Systems Biology Markup Language (SBML). Poincaré and SimBio are developed as pure Python packages enabling users to easily extend their simulation capabilities by writing new or leveraging other Python packages. Moreover, this does not compromise the performance, as code can be just-in-time compiled with Numba. Our benchmark tests using curated models from the BioModels repository demonstrate that these tools may provide a potentially superior performance advantage compared to other existing tools. In addition, to ensure a user-friendly experience, our packages use standard typed modern Python syntax that provides a seamless integration with integrated development environments. Our Python-centric approach significantly enhances code analysis, error detection, and refactoring capabilities, positioning Poincaré and SimBio as valuable tools for the modeling community. AVAILABILITY AND IMPLEMENTATION: Poincaré and SimBio are released under the MIT license. Their source code is available on GitHub (https://github.com/maurosilber/poincare and https://github.com/hgrecco/simbio) and can be installed from PyPI or conda-forge.


Subject(s)
Programming Languages , Software , Systems Biology , Systems Biology/methods , Computer Simulation , Models, Biological
2.
J Cheminform ; 14(1): 37, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35692045

ABSTRACT

As an alternative to one drug-one target approaches, systems biology methods can provide a deeper insight into the holistic effects of drugs. Network-based approaches are tools of systems biology, that can represent valuable methods for visualizing and analysing drug-protein and protein-protein interactions. In this study, a KNIME workflow is presented which connects drugs to causal target proteins and target proteins to their causal protein interactors. With the collected data, networks can be constructed for visualizing and interpreting the connections. The last part of the workflow provides a topological enrichment test for identifying relevant pathways and processes connected to the submitted data. The workflow is based on openly available databases and their web services. As a case study, compounds of DILIRank were analysed. DILIRank is the benchmark dataset for Drug-Induced Liver Injury by the FDA, where compounds are categorized by their likeliness of causing DILI. The study includes the drugs that are most likely to cause DILI ("mostDILI") and the ones that are not likely to cause DILI ("noDILI"). After selecting the compounds of interest, down- and upregulated proteins connected to the mostDILI group were identified; furthermore, a liver-specific subset of those was created. The downregulated sub-list had considerably more entries, therefore, network and causal interactome were constructed and topological pathway enrichment analysis was performed with this list. The workflow identified proteins such as Prostaglandin G7H synthase 1 and UDP-glucuronosyltransferase 1A9 as key participants in the potential toxic events disclosing the possible mode of action. The topological network analysis resulted in pathways such as recycling of bile acids and salts and glucuronidation, indicating their involvement in DILI. The KNIME pipeline was built to support target and network-based approaches to analyse any sets of drug data and identify their target proteins, mode of actions and processes they are involved in. The fragments of the pipeline can be used separately or can be combined as required.

3.
Article in English | MEDLINE | ID: mdl-36909847

ABSTRACT

During the COVID-19 pandemic, mathematical modeling of disease transmission has become a cornerstone of key state decisions. To advance the state-of-the-art host viral modeling to handle future pandemics, many scientists working on related issues assembled to discuss the topics. These discussions exposed the reproducibility crisis that leads to inability to reuse and integrate models. This document summarizes these discussions, presents difficulties, and mentions existing efforts towards future solutions that will allow future model utility and integration. We argue that without addressing these challenges, scientists will have diminished ability to build, disseminate, and implement high-impact multi-scale modeling that is needed to understand the health crises we face.

4.
Nucleic Acids Res ; 50(D1): D11-D19, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850134

ABSTRACT

The European Bioinformatics Institute (EMBL-EBI) maintains a comprehensive range of freely available and up-to-date molecular data resources, which includes over 40 resources covering every major data type in the life sciences. This year's service update for EMBL-EBI includes new resources, PGS Catalog and AlphaFold DB, and updates on existing resources, including the COVID-19 Data Platform, trRosetta and RoseTTAfold models introduced in Pfam and InterPro, and the launch of Genome Integrations with Function and Sequence by UniProt and Ensembl. Furthermore, we highlight projects through which EMBL-EBI has contributed to the development of community-driven data standards and guidelines, including the Recommended Metadata for Biological Images (REMBI), and the BioModels Reproducibility Scorecard. Training is one of EMBL-EBI's core missions and a key component of the provision of bioinformatics services to users: this year's update includes many of the improvements that have been developed to EMBL-EBI's online training offering.


Subject(s)
Computational Biology/education , Computational Biology/methods , Databases, Factual , Academies and Institutes , Artificial Intelligence , COVID-19 , Databases, Factual/economics , Databases, Factual/statistics & numerical data , Databases, Pharmaceutical , Databases, Protein , Europe , Genome, Human , Humans , Information Storage and Retrieval , RNA, Untranslated/genetics , SARS-CoV-2/genetics
5.
Mol Syst Biol ; 17(2): e9982, 2021 02.
Article in English | MEDLINE | ID: mdl-33620773

ABSTRACT

Reproducibility of scientific results is a key element of science and credibility. The lack of reproducibility across many scientific fields has emerged as an important concern. In this piece, we assess mathematical model reproducibility and propose a scorecard for improving reproducibility in this field.


Subject(s)
Systems Biology/methods , Data Curation , Humans , Models, Theoretical , Reproducibility of Results
6.
Brief Bioinform ; 22(2): 1848-1859, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32313939

ABSTRACT

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled 'Annotation and curation of computational models in biology', organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements.


Subject(s)
Computational Biology/methods , Models, Biological , Practice Guidelines as Topic , Reproducibility of Results
7.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Article in English | MEDLINE | ID: mdl-32845085

ABSTRACT

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Subject(s)
Systems Biology/methods , Animals , Humans , Logistic Models , Models, Biological , Software
8.
J Integr Bioinform ; 17(2-3)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32598315

ABSTRACT

This paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences. Over the past 10 years, COMBINE has brought together standard communities that have further developed and harmonized their standards for better interoperability of models and data. COMBINE 2019 was co-located with a stakeholder workshop of the European EU-STANDS4PM initiative that aims at harmonized data and model standardization for in silico models in the field of personalized medicine, as well as with the FAIRDOM PALs meeting to discuss findable, accessible, interoperable and reusable (FAIR) data sharing. This report briefly describes the work discussed in invited and contributed talks as well as during breakout sessions. It also highlights recent advancements in data, model, and annotation standardization efforts. Finally, this report concludes with some challenges and opportunities that this community will face during the next 10 years.


Subject(s)
Computational Biology , Synthetic Biology , Germany , Reference Standards , Software
9.
Bioinformatics ; 36(17): 4649-4654, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32573648

ABSTRACT

MOTIVATION: One of the major bottlenecks in building systems biology models is identification and estimation of model parameters for model calibration. Searching for model parameters from published literature and models is an essential, yet laborious task. RESULTS: We have developed a new service, BioModels Parameters, to facilitate search and retrieval of parameter values from the Systems Biology Markup Language models stored in BioModels. Modellers can now directly search for a model entity (e.g. a protein or drug) to retrieve the rate equations describing it; the associated parameter values (e.g. degradation rate, production rate, Kcat, Michaelis-Menten constant, etc.) and the initial concentrations. Currently, BioModels Parameters contains entries from over 84,000 reactions and 60 different taxa with cross-references. The retrieved rate equations and parameters can be used for scanning parameter ranges, model fitting and model extension. Thus, BioModels Parameters will be a valuable service for systems biology modellers. AVAILABILITY AND IMPLEMENTATION: The data are accessible via web interface and API. BioModels Parameters is free to use and is publicly available at https://www.ebi.ac.uk/biomodels/parameterSearch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Models, Biological , Systems Biology , Software
10.
Nucleic Acids Res ; 48(D1): D407-D415, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31701150

ABSTRACT

Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the world's largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse.


Subject(s)
Models, Biological , Biological Science Disciplines , Conflict of Interest , Programming Languages , Software , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL