Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Syst Evol Microbiol ; 65(8): 2485-2490, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25920725

ABSTRACT

Three Lactobacillus-like strains, NB53T, NB446T and NB702, were isolated from traditional fermented food in Thailand. Comparative 16S rRNA gene sequence analysis indicated that these strains belong to the Lactobacillus plantarum group. Phylogenetic analysis based on the dnaK, rpoA, pheS and recA gene sequences indicated that these three strains were distantly related to known species present in the L. plantarum group. DNA-DNA hybridization with closely related strains demonstrated that these strains represented two novel species; the novel strains could be differentiated based on chemotaxonomic and phenotypic characteristics. Therefore, two novel species of the genus Lactobacillus, Lactobacillus plajomi sp. nov. (NB53T) and Lactobacillus modestisalitolerans sp. nov. (NB446T and NB702), are proposed with the type strains NB53T ( = NBRC 107333T = BCC 38054T) and NB446T ( = NBRC 107235T = BCC 38191T), respectively.


Subject(s)
Fish Products/microbiology , Food Microbiology , Lactobacillus/classification , Meat Products/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Fermentation , Genes, Bacterial , Lactobacillus/genetics , Lactobacillus/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Thailand
4.
Biosci Biotechnol Biochem ; 75(3): 419-26, 2011.
Article in English | MEDLINE | ID: mdl-21389630

ABSTRACT

Isolates AH11(T) and AH13(T) were isolated from flowers of lantana and candle bush respectively collected in Thailand. In phylogenetic trees based on 16S rRNA gene sequences, the two isolates formed an independent cluster, which was then connected to the type strain of Saccharibacter floricola. The calculated pair-wise 16S rRNA gene sequence similarities of isolate AH11(T) were 95.7-92.3% to the type strains of the type species of the 12 genera of acetic acid bacteria. The DNA base composition was from 51.2 to 56.8 mol % G+C, with a range of 5.6 mol %. When isolate AH11(T) was labeled, DNA-DNA similarities were 100, 12, 4, 5, and 4% respectively to isolates AH11(T) and AH13(T) and the type strains of Saccharibacter floricola, Gluconobacter oxydans, and Acetobacter aceti. The two isolates were non-motile and did not oxidize either acetate or lactate. No growth was found in the presence of 0.35% acetic acid w/v. The two isolates were not osmophilic but osmotolerant, produced 2,5-diketo-D-gluconate from D-glucose, and did not oxidize lactate, thus differing from strains of Saccharibacter floricola, which showed weak lactate oxidation. The two isolates contained unsaturated C(18:1)ω7c fatty acid as the major fatty acid, and were unique in the presence of a considerable amount of straight-chain C(18:1)2OH fatty acid. Q-10 was present as the major isoprenoid quinone. Neokomagataea gen. nov. was proposed with the two species, Neokomagataea thailandica sp. nov. for isolate AH11(T) (=BCC 25710(T)=NBRC 106555(T)), which has 56.8 mol % G+C, and Neokomagataea tanensis sp. nov. for isolate AH13(T) (=BCC 25711(T)=NBRC 106556(T)), which has 51.2 mol % G+C.


Subject(s)
Acetobacteraceae/genetics , Alphaproteobacteria , DNA, Bacterial/genetics , Acetic Acid , Acetobacteraceae/classification , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Base Sequence , DNA, Bacterial/isolation & purification , Fatty Acids , Flowers/microbiology , Gluconates , Glucose , Lantana/microbiology , Molecular Sequence Data , Osmolar Concentration , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Thailand
5.
Int J Syst Evol Microbiol ; 61(Pt 9): 2117-2122, 2011 Sep.
Article in English | MEDLINE | ID: mdl-20870887

ABSTRACT

Three strains, RBY-1(T), PHD-1 and PHD-2, were isolated from fruits in Thailand. The strains were Gram-negative, aerobic rods with polar flagella, produced acetic acid from ethanol and did not oxidize acetate or lactate. In phylogenetic trees based on 16S rRNA gene sequences and 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, the strains formed a cluster separate from the type strains of recognized species of the genus Gluconobacter. The calculated 16S rRNA gene sequence and 16S-23S rRNA gene ITS sequence similarities were respectively 97.7-99.7 % and 77.3-98.1 %. DNA G+C contents ranged from 57.2 to 57.6 mol%. The strains showed high DNA-DNA relatedness of 100 % to one another, but low DNA-DNA relatedness of 11-34 % to the tested type strains of recognized Gluconobacter species. Q-10 was the major quinone. On the basis of the genotypic and phenotypic data obtained, the three strains clearly represent a novel species, for which the name Gluconobacter nephelii sp. nov. is proposed. The type strain is RBY-1(T) ( = BCC 36733(T) = NBRC 106061(T) = PCU 318(T)), whose DNA G+C content is 57.2 mol%.


Subject(s)
Acetic Acid/metabolism , Gluconobacter/classification , Gluconobacter/isolation & purification , Aerobiosis , Bacterial Typing Techniques , Base Composition , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Ethanol/metabolism , Flagella/physiology , Fruit/microbiology , Gluconobacter/genetics , Gluconobacter/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Thailand
8.
Biosci Biotechnol Biochem ; 73(10): 2156-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19809199

ABSTRACT

Two isolates, AC04(T) and AC05, were isolated from the flowers of red ginger collected in Chiang Mai, Thailand. In phylogenetic trees based on 16S rRNA gene sequences, the two isolates were included within a lineage comprised of the genera Acidomonas, Gluconacetobacter, Asaia, Kozakia, Swaminathania, Neoasaia, Granulibacter, and Tanticharoenia, and they formed an independent cluster along with the type strain of Tanticharoenia sakaeratensis. The calculated pair-wise sequence similarities of isolate AC04(T) were 97.8-92.5% to the type strains of the type species of the 11 genera of acetic acid bacteria. The DNA base composition was 66.0-66.1 mol % G+C with a range of 0.1 mol %. A single-stranded, labeled DNA from isolate AC04(T) presented levels of DNA-DNA hybridization of 100, 85, 4, and 3% respectively to DNAs from isolates AC04(T) and AC05 and the type strains of Tanticharoenia sakaeratensis and Gluconacetobacter liquefaciens. The two isolates were unique morphologically in polar flagellation and physiologically in intense acetate oxidation to carbon dioxide and water and weak lactate oxidation. The intensity in acetate oxidation almost equaled that of the type strain of Acetobacter aceti. The two isolates had Q-10. Isolate AC04(T) was discriminated from the type strains of the type species of the 11 genera by 16S rRNA gene restriction analysis using restriction endonucleases TaqI and Hin6I. The unique phylogenetic, genetic, morphological, physiological, and biochemical characteristics obtained indicate that the two isolates can be classified into a separate genus, and Ameyamaea chiangmaiensis gen. nov., sp. nov. is proposed. The type strain is isolate AC04(T) (=BCC 15744(T), =NBRC 103196(T)), which has a DNA G+C content of 66.0 mol %.


Subject(s)
Acetic Acid/metabolism , Acetobacteraceae/classification , Acetobacteraceae/metabolism , Acetobacteraceae/genetics , Acetobacteraceae/ultrastructure , Microscopy, Electron, Transmission , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
10.
Int J Syst Evol Microbiol ; 59(Pt 3): 466-71, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19244423

ABSTRACT

Five strains, NBRC 3271(T), NBRC 3272, NBRC 3263, NBRC 3260 and NBRC 3269 were examined genetically, phylogenetically, phenotypically and chemotaxonomically. The DNA G+C contents of the five strains were 55.1-56.4 mol%. The five strains had low levels of DNA-DNA hybridization of 13-51 % to the type strains of Gluconobacter frateurii, Gluconobacter thailandicus, Gluconobacter oxydans, Gluconobacter cerinus, Gluconobacter albidus and Gluconobacter kondonii and formed a cluster that was separate from the type strains of the six Gluconobacter species given above in phylogenetic trees based on 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences. The five strains weakly produced dihydroxyacetone from glycerol, but not 2,5-diketo-d-gluconate or a water-soluble brown pigment from d-glucose and contained ubiquinone-10. The five strains were assigned as representing a novel species of the genus Gluconobacter, for which the name Gluconobacter japonicus sp. nov. is proposed. The type strain is NBRC 3271(T) (=BCC 14458(T)=strain 7(T), K. Kondo). Cells of the type strain are motile by means of polar flagella and the DNA G+C content is 56.4 mol%.


Subject(s)
Acetic Acid/metabolism , Alphaproteobacteria/classification , Gluconobacter/classification , Alphaproteobacteria/chemistry , Alphaproteobacteria/genetics , Alphaproteobacteria/physiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/analysis , DNA, Ribosomal Spacer/analysis , Genes, rRNA , Gluconobacter/chemistry , Gluconobacter/genetics , Gluconobacter/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA , Species Specificity
11.
Microbes Environ ; 24(2): 135-43, 2009.
Article in English | MEDLINE | ID: mdl-21566366

ABSTRACT

Twenty-six strains of acetic acid bacteria were isolated from fruits, flowers and related materials collected in Thailand. They were divided into three genera, Acetobacter, Gluconobacter and Asaia, by phenotypic characterization and 16S rRNA gene sequence analyses. On the basis of 16S-23S rRNA gene internal transcribed spacer (16S-23S rDNA ITS) restriction and 16S rRNA gene sequence analyses, fourteen isolates assigned to the genus Acetobacter were divided into five groups: 1) Group 1A or A. tropicalis (one isolate); 2) Group 2A or A. orientalis (four isolates); 3) Group 3A or A. pasteurianus (five isolates); 4) Group 4A or A. syzygii (one isolate); and 5) Group 5A or A. ghanensis (three isolates). The eleven isolates assigned to the genus Gluconobacter were divided into three groups: 6) Group 1B or G. frateurii (four isolates); 7) Group 2B or G. japonicus (six isolates); and 8) Group 3B or unidentified (one isolate). The remaining isolate was placed into: 9) Group 1C or unidentified, which was assigned to the genus Asaia and considered to constitute a new species on the basis of the 16S rRNA gene sequence analysis and DNA-DNA hybridization.

12.
J Gen Appl Microbiol ; 54(4): 211-20, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18802320

ABSTRACT

Strain NBRC 12467T was examined genetically, phylogenetically, phenotypically, and chemotaxonomically. The DNA G+C content of the strain was 59.5 mol%. The strain represented low levels of DNA-DNA hybridization of 49-9% to the type strains of eight Gluconobacter species. The strain formed a cluster along with the type strains of G. albidus and G. kondonii in phylogenetic trees based on 16S rRNA gene sequences. In a phylogenetic tree based on 16S-23S rRNA gene ITS sequences, however, the strain formed an independent cluster from the type strains of the eight Gluconobacter species. Such phylogenetic relationships were supported by the calculated pair-wise 16S rRNA gene and 16S-23S rRNA gene ITS sequence similarities. The strain was distinguished from the type strains of the eight Gluconobacter species by 16S-23S rRNA gene ITS restriction analysis using five restriction endonucleases. The strain produced a water-soluble brown pigment and 2,5-diketo-D-gluconate from D-glucose, differing from the type strains of the eight Gluconobacter species, and acid from meso-erythritol very weakly, differing from the type strains of the remaining seven Gluconobacter species except for the type strain of G. roseus, but not from maltose, differing from the type strain of G. oxydans, and had Q-10. For the strain, which was once classified as G. oxydans subsp. sphaericus, Gluconobacter sphaericus (Ameyama 1975) comb. nov. is proposed. The type strain is NBRC 12467T, which is also deposited as BCC 14448T.


Subject(s)
DNA, Bacterial/genetics , Gluconobacter/classification , Phylogeny , Pigments, Biological/biosynthesis , Base Composition , DNA, Ribosomal/genetics , Genes, Bacterial , Genes, rRNA , Gluconobacter/genetics , Gluconobacter/metabolism , Nucleic Acid Hybridization , Phenotype , RNA, Ribosomal, 16S/genetics , Restriction Mapping , Sequence Alignment , Sequence Analysis, DNA
14.
Biosci Biotechnol Biochem ; 72(3): 666-71, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18323663

ABSTRACT

Asaia lannaensis sp. nov. was described for two strains isolated from flowers of the spider lily collected in Chiang Mai, Thailand. The isolates produced acetic acid from ethanol on ethanol/calcium carbonate agar, differing from the type strains of Asaia bogorensis, Asaia siamensis, and Asaia krungthepensis, but did not grow in the presence of 0.35% acetic acid (v/v). The new species is the fourth of the genus Asaia, the family Acetobacteraceae.


Subject(s)
Acetobacteraceae/isolation & purification , Alphaproteobacteria/isolation & purification , Acetobacteraceae/classification , Alphaproteobacteria/classification , Base Sequence , DNA, Ribosomal , Flowers/microbiology , Genes, Bacterial , Molecular Sequence Data , RNA, Ribosomal, 16S , Restriction Mapping
15.
Biosci Biotechnol Biochem ; 72(3): 672-6, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18323667

ABSTRACT

Tanticharoenia sakaeratensis gen. nov., sp. nov. is proposed for three strains isolated from soil collected in Thailand. The three strains, AC37(T), AC38, and AC39, were included within a lineage comprising the genera Asaia, Kozakia, Swaminathania, Neoasaia, Acetobacter, Gluconobacter, and Saccharibacter in a phylogenetic tree based on 16S rRNA gene sequences, but formed a quite different, independent cluster. Pair-wise sequence similarities of strain AC37(T) were 96.5-92.1% to the type strains of Acetobacter aceti, Gluconobacter oxydans, Acidomonas methanolica, Gluconacetobacter liquefaciens, Asaia bogorensis, Kozakia baliensis, Swaminathania salitolerans, Saccharibacter floricola, Neoasaia chiangmaiensis, and Granulibacter bethesdensis. The three strains had DNA base compositions comprising respectively 65.6, 64.5, and 65.6 mol % G+C with a range of 1.1 mol %, and formed a single species. Phenotypically, the three strains did not oxidize acetate or lactate, but grew on 30% D-glucose (w/v). Chemotaxonomically, they had Q-10. The type strain is AC37(T) (= BCC 15772(T) = NBRC 103193(T)).


Subject(s)
Acetobacteraceae/isolation & purification , Alphaproteobacteria/isolation & purification , Acetobacteraceae/genetics , Alphaproteobacteria/genetics , Bacterial Typing Techniques , DNA, Bacterial , Genes, rRNA , Osmolar Concentration , Phylogeny , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Soil Microbiology
18.
J Gen Appl Microbiol ; 53(2): 133-42, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17575453

ABSTRACT

Forty-four Thai isolates phenotypically assigned to the genus Gluconobacter were examined for 16S-23S rDNA ITS restriction analysis by MboII and SduI (=Bsp1286I) digestions. The Thai isolates tested were divided into seven groups: Group I for fourteen isolates, Group IX for one isolate, Group X for two isolates, Group V-2 for four isolates, Group XI for three isolates, Group IV for one isolate, and Group III for nineteen isolates. There were no isolates of either Group II or Group V-1 that were identified as G. cerinus. The isolates of Group III, Group IV, and Group XI were subjected to an additional 16S-23S rDNA ITS restriction analysis by AvaII, TaqI, BsoBI, and BstNI digestions. The isolates of Group III were divided into three groups and two subgroups: Group III-2 for five isolates, Group III-6 for two isolates, and Group III-4, which was divided into two subgroups, Subgroup III-4a for four isolates and Subgroup III-4b for eight isolates. The fourteen isolates of Group I were identified as G. oxydans, and the two isolates of Group X were temporarily identified as G. oxydans. The five isolates of Group III-2 and the one isolate of Group IV were identified as G. frateurii. The remaining twenty-two isolates of Group V-2, Group III-4, Group III-6, Group IX, and Group XI were not identified but are candidates for several new species.


Subject(s)
DNA, Bacterial/genetics , Gluconobacter/classification , DNA, Ribosomal Spacer/genetics , Gluconobacter/genetics , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S , Restriction Mapping , Species Specificity , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...